draft-ietf-ospf-segment-routing-extensions-24.txt   draft-ietf-ospf-segment-routing-extensions-25.txt 
Open Shortest Path First IGP P. Psenak, Ed. Open Shortest Path First IGP P. Psenak, Ed.
Internet-Draft S. Previdi, Ed. Internet-Draft S. Previdi, Ed.
Intended status: Standards Track C. Filsfils Intended status: Standards Track C. Filsfils
Expires: June 17, 2018 Cisco Systems, Inc. Expires: October 22, 2018 Cisco Systems, Inc.
H. Gredler H. Gredler
RtBrick Inc. RtBrick Inc.
R. Shakir R. Shakir
Google, Inc. Google, Inc.
W. Henderickx W. Henderickx
Nokia Nokia
J. Tantsura J. Tantsura
Individual Individual
December 14, 2017 April 20, 2018
OSPF Extensions for Segment Routing OSPF Extensions for Segment Routing
draft-ietf-ospf-segment-routing-extensions-24 draft-ietf-ospf-segment-routing-extensions-25
Abstract Abstract
Segment Routing (SR) allows a flexible definition of end-to-end paths Segment Routing (SR) allows a flexible definition of end-to-end paths
within IGP topologies by encoding paths as sequences of topological within IGP topologies by encoding paths as sequences of topological
sub-paths, called "segments". These segments are advertised by the sub-paths, called "segments". These segments are advertised by the
link-state routing protocols (IS-IS and OSPF). link-state routing protocols (IS-IS and OSPF).
This draft describes the OSPFv2 extensions required for Segment This draft describes the OSPFv2 extensions required for Segment
Routing. Routing.
skipping to change at page 2, line 4 skipping to change at page 2, line 4
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/. Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 17, 2018. This Internet-Draft will expire on October 22, 2018.
Copyright Notice Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
skipping to change at page 7, line 32 skipping to change at page 7, line 32
range and SID index correspondence is preserved across graceful range and SID index correspondence is preserved across graceful
restarts. restarts.
o The receiving router MUST adhere to the order in which the ranges o The receiving router MUST adhere to the order in which the ranges
are advertised when calculating a SID/label from a SID index. are advertised when calculating a SID/label from a SID index.
o The originating router MUST NOT advertise overlapping ranges. o The originating router MUST NOT advertise overlapping ranges.
o When a router receives multiple overlapping ranges, it MUST o When a router receives multiple overlapping ranges, it MUST
conform to the procedures defined in conform to the procedures defined in
[I-D.ietf-spring-conflict-resolution]. [I-D.ietf-spring-segment-routing-mpls].
The following example illustrates the advertisement of multiple The following example illustrates the advertisement of multiple
ranges: ranges:
The originating router advertises the following ranges: The originating router advertises the following ranges:
Range 1: Range Size: 100 SID/Label Sub-TLV: 100 Range 1: Range Size: 100 SID/Label Sub-TLV: 100
Range 1: Range Size: 100 SID/Label Sub-TLV: 1000 Range 1: Range Size: 100 SID/Label Sub-TLV: 1000
Range 1: Range Size: 100 SID/Label Sub-TLV: 500 Range 1: Range Size: 100 SID/Label Sub-TLV: 500
skipping to change at page 10, line 21 skipping to change at page 10, line 21
The RI LSA can be advertised at any of the defined flooding scopes The RI LSA can be advertised at any of the defined flooding scopes
(link, area, or autonomous system (AS)). For the purpose of SRLB TLV (link, area, or autonomous system (AS)). For the purpose of SRLB TLV
advertisement, area-scoped flooding is REQUIRED. advertisement, area-scoped flooding is REQUIRED.
3.4. SRMS Preference TLV 3.4. SRMS Preference TLV
The Segment Routing Mapping Server Preference TLV (SRMS Preference The Segment Routing Mapping Server Preference TLV (SRMS Preference
TLV) is used to advertise a preference associated with the node that TLV) is used to advertise a preference associated with the node that
acts as an SR Mapping Server. The role of an SRMS is described in acts as an SR Mapping Server. The role of an SRMS is described in
[I-D.ietf-spring-segment-routing-ldp-interop]. SRMS preference is [I-D.ietf-spring-segment-routing-ldp-interop]. SRMS preference is
defined in [I-D.ietf-spring-conflict-resolution]. defined in [I-D.ietf-spring-segment-routing-ldp-interop].
The SRMS Preference TLV is a top-level TLV of the Router Information The SRMS Preference TLV is a top-level TLV of the Router Information
Opaque LSA (defined in [RFC7770]). Opaque LSA (defined in [RFC7770]).
The SRMS Preference TLV MAY only be advertised once in the Router The SRMS Preference TLV MAY only be advertised once in the Router
Information Opaque LSA and has the following format: Information Opaque LSA and has the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 26, line 35 skipping to change at page 26, line 35
We would like to thank Anton Smirnov for his contribution. We would like to thank Anton Smirnov for his contribution.
Thanks to Acee Lindem for the detail review of the draft, Thanks to Acee Lindem for the detail review of the draft,
corrections, as well as discussion about details of the encoding. corrections, as well as discussion about details of the encoding.
13. References 13. References
13.1. Normative References 13.1. Normative References
[I-D.ietf-spring-conflict-resolution]
Ginsberg, L., Psenak, P., Previdi, S., and M. Pilka,
"Segment Routing MPLS Conflict Resolution", draft-ietf-
spring-conflict-resolution-05 (work in progress), July
2017.
[I-D.ietf-spring-segment-routing] [I-D.ietf-spring-segment-routing]
Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B., Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
Litkowski, S., and R. Shakir, "Segment Routing Litkowski, S., and R. Shakir, "Segment Routing
Architecture", draft-ietf-spring-segment-routing-13 (work Architecture", draft-ietf-spring-segment-routing-15 (work
in progress), October 2017. in progress), January 2018.
[I-D.ietf-spring-segment-routing-ldp-interop] [I-D.ietf-spring-segment-routing-ldp-interop]
Filsfils, C., Previdi, S., Bashandy, A., Decraene, B., and Bashandy, A., Filsfils, C., Previdi, S., Decraene, B., and
S. Litkowski, "Segment Routing interworking with LDP", S. Litkowski, "Segment Routing interworking with LDP",
draft-ietf-spring-segment-routing-ldp-interop-09 (work in draft-ietf-spring-segment-routing-ldp-interop-11 (work in
progress), September 2017. progress), April 2018.
[I-D.ietf-spring-segment-routing-mpls]
Bashandy, A., Filsfils, C., Previdi, S., Decraene, B.,
Litkowski, S., and R. Shakir, "Segment Routing with MPLS
data plane", draft-ietf-spring-segment-routing-mpls-13
(work in progress), April 2018.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>. <https://www.rfc-editor.org/info/rfc2119>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
DOI 10.17487/RFC2328, April 1998, DOI 10.17487/RFC2328, April 1998,
<https://www.rfc-editor.org/info/rfc2328>. <https://www.rfc-editor.org/info/rfc2328>.
skipping to change at page 28, line 5 skipping to change at page 27, line 49
Router Capabilities", RFC 7770, DOI 10.17487/RFC7770, Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
February 2016, <https://www.rfc-editor.org/info/rfc7770>. February 2016, <https://www.rfc-editor.org/info/rfc7770>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26, Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017, RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>. <https://www.rfc-editor.org/info/rfc8126>.
13.2. Informative References 13.2. Informative References
[I-D.ietf-spring-segment-routing-mpls]
Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
Litkowski, S., and R. Shakir, "Segment Routing with MPLS
data plane", draft-ietf-spring-segment-routing-mpls-11
(work in progress), October 2017.
[RFC7474] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed., [RFC7474] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
"Security Extension for OSPFv2 When Using Manual Key "Security Extension for OSPFv2 When Using Manual Key
Management", RFC 7474, DOI 10.17487/RFC7474, April 2015, Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
<https://www.rfc-editor.org/info/rfc7474>. <https://www.rfc-editor.org/info/rfc7474>.
[RFC7855] Previdi, S., Ed., Filsfils, C., Ed., Decraene, B., [RFC7855] Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
Litkowski, S., Horneffer, M., and R. Shakir, "Source Litkowski, S., Horneffer, M., and R. Shakir, "Source
Packet Routing in Networking (SPRING) Problem Statement Packet Routing in Networking (SPRING) Problem Statement
and Requirements", RFC 7855, DOI 10.17487/RFC7855, May and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
2016, <https://www.rfc-editor.org/info/rfc7855>. 2016, <https://www.rfc-editor.org/info/rfc7855>.
 End of changes. 12 change blocks. 
24 lines changed or deleted 18 lines changed or added

This html diff was produced by rfcdiff 1.46. The latest version is available from http://tools.ietf.org/tools/rfcdiff/