MBONED WGZheng.Z. Zhang Internet-DraftCui. WangZTE Corporation Intended status: Standards TrackZTE CorporationC. Wang Expires:March 15,September 8, 2020Ying.Individual Y. Cheng China UnicomXufeng.X. Liu Volta NetworksMahesh.M. Sivakumar Juniper networksSeptember 12, 2019March 7, 2020 Multicast YANG Data Modeldraft-ietf-mboned-multicast-yang-model-02draft-ietf-mboned-multicast-yang-model-03 Abstract This documentintents to provideprovides a generaland all-roundmulticast YANG data model, whichtries to stand at a high level to taketakes full advantages of existed multicast protocol models to control the multicast network, and guides the deployment of multicast service.And also, there will define several possible RPCs about how to interact between multicast YANG data model and multicast protocol models. This multicast YANG data model is mainly used by the management tools run by the network operators in order to manage, monitor and debug the network resources used to deliver multicast service, as well as gathering some data from the network.Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire onMarch 15,September 8, 2020. Copyright Notice Copyright (c)20192020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Conventions Used in This Document . . . . . . . . . . . . 4 1.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 4 1.4. Prefixes in Data Node Names . . . . . . . . . . . . . . . 4 1.5. Usage of Multicast Model . . . . . . . . . . . . . . . . 4 2. Design of the multicast model . . . . . . . . . . . . . . . .4 3. UML Class like Diagram for Multicast YANG data6 2.1. Scope of Model . . . .4 4. Model Structure. . . . . . . . . . . . . . . . . 6 2.2. Specification . . . . . .5 5. Multicast YANG data Model. . . . . . . . . . . . . . . . 7 3. Module Structure . .7 6. Notifications. . . . . . . . . . . . . . . . . . . . 7 3.1. UML like Class Diagram for Multicast YANG data Model . . 7 3.2. Model Structure . .20 7. Acknowledgements. . . . . . . . . . . . . . . . . . . 9 3.3. Multicast YANG data model Configuration . . .20 8. Normative References. . . . . . 12 3.4. Multicast YANG data model State . . . . . . . . . . . . . 12 3.5. Multicast YANG data model Notification .20 Authors' Addresses. . . . . . . . 12 4. Multicast YANG data Model . . . . . . . . . . . . . . .22 1. Introduction Currently, there are many multicast protocol YANG models,. . . 13 5. Security Considerations . . . . . . . . . . . . . . . . . . . 26 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 27 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 28 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.1. Normative References . . . . . . . . . . . . . . . . . . 28 8.2. Informative References . . . . . . . . . . . . . . . . . 31 Appendix A. Data Tree Example . . . . . . . . . . . . . . . . . 33 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 34 1. Introduction Currently, there are many multicast protocol YANG models, such as PIM, MLD, and BIER and so on. But all these models are distributed in different working groups as separate files and focus on the protocol itself. Furthermore, they cannot describe a high-level multicast service required by network operators. This documentintents to provideprovides a general and all-round multicast model, whichtries to standstands at a high level to take full advantages of these aforementioned models to control the multicast network, andguidesguide the deployment of multicast service. This model is designed to be used along with other multicast YANG models such as PIM [I-D.ietf-pim-yang], which are not covered in this document. 1.1. Terminology The terminology for describing YANG datamodelmodels ismainlyfound in [RFC6020] and [RFC7950], including: o augment o data model o data node o identity o module The following abbreviations are usedby the management tools run by the network operatorsinorder to manage, monitorthis document anddebugthenetwork resources used to deliver multicast service, as well as gathering some datadefined model: BIER: Bit Index Explicit Replication [RFC8279]. MLD: Multicast Listener Discovery [I-D.ietf-bier-mld]. PIM: Protocol Independent Multicast [RFC7761]. BGP: Border Gateway Protocol [RFC4271]. MVPN: Multicast in MPLS/BGP IP VPNs [RFC6513]. MLDP: Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths [RFC6388]. OSPF: Open Shortest Path First [RFC2328]. ISIS: Intermediate System to Intermediate System Routeing Exchange Protocol [RFC1195]. BABEL: [I-D.ietf-babel-rfc6126bis]. P2MP-TE: Point-to-Multipoint Traffic Engineering [RFC4875]. BIER-TE: Traffic Engineering for Bit Index Explicit Replication [I-D.ietf-bier-te-arch]. 1.2. Conventions Used in This Document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 1.3. Tree Diagrams Tree diagrams used in this document follow the notation defined in [RFC8340]. 1.4. Prefixes in Data Node Names In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from thenetwork.context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1. +----------+--------------------+----------------------+ | Prefix | YANG module | Reference | +----------+--------------------+----------------------+ | inet | ietf-inet-types | [RFC6991] | | | | | | rt-types | ietf-routing-types | [RFC8294] | | | | | | rt | ietf-routing | [RFC8349] | | | | | | ospf | ietf-ospf | [I-D.ietf-ospf-yang] | +----------+--------------------+----------------------+ Table 1 1.5. Usage of Multicast Model This multicast YANG data model is mainly used by the management tools run by the network operators, in order to manage, monitor and debug the network resources which are used to deliver multicast service. This model is used for gathering data from the network as well. +------------------------+ | Multicast Model | +------------------------+ | | | | | | | +---------+ +----------+ | | EMS/NMS | |Controller| | +---------+ +----------+ | | | | | | +------------------------------------------------+ | Network Element1.....N | +------------------------------------------------+ Figure 1:Example usageUsage of Multicast Model Detailly, in figure 1, there is an example of usage of this multicast model. Network operators can use this model in a controllerwhowhich is responsible to implementsomespecific multicast flows with specific protocols and invoke the corresponding protocols' model to configure the network elements through NETCONF/RESTCONF/CLI. Or network operators can use this model to the EMS/NMS to manage the network elements or configure the network elements directly.For example, a multicast service need to be delopy in a network, supposed that+------------+ | +----------------------------+ +--------------+ Controller | | | | +-----------+ | | +------------+ | | | | | | +-----------------------------+ | | | | | | | | | +------+---+--+ | | | |Egress router+--+ Receiver | | | +------+------+ | +---+-----+----+ | | Source +-|Ingress router| BIER domain | | +---------+----+ | | | +------+------+ | | |Egress router+--+ Receiver | | +------+----+-+ | | | | | +-----------------------------+ +---------------+ Figure 2: Example The network administrator can use the multicast model and associated models to deploy the multicast service. For example, suppose that the flow for a multicast service is239.0.0.0/8,233.252.0.0/16, the flow should betransportforwarded by BIERtechnology. Then we use[RFC8279] with MPLS encapsulation [RFC8296]. Correspoding IGP protocol which is used to build BIER transport layer is OSPF [RFC2328]. In thismulticast YANG data model and setmodel, the correspond key(239.0.0.0) and associatedis set to 233.252.0.0/16, the transport technologywith BIER, send theis set to BIER. The BIER underlay protocol is set to OSPF. The modelfrom controlleris sent to every egdenoderouter from the controller. If the BIER transport layer which depends on OSPF has not been built in thenetwork. Then therenetwork, the multicast YANG model will invoke the BIER YANG model which isan interaction among alldefined in [I-D.ietf-bier-bier-yang] generation in thenodes to exchangecontroller. After the BIER transport layer is built, themulticast flow information. Theingressnode will encapsulaterouter encapsulates the multicast flow with BIER header andsendsends it into the network. Intermediatenodes willrouters forward the flows to all the egress nodes by BIER forwarding. On the other hand, when the network elements detect failure or some other changes, the network devices can send the affected multicast flows and the associated overlay/ transport/ underlay information to the controller. Then the controller/ EMS/NMS can response immediately due to the failure and distribute new model for the flows to the network nodes quickly. Such as the changing of the failure overlay protocol to another one, as well as transport and underlay protocol. Specifically, in section 3, it provides a human readability of the whole multicast network through UML like class diagram, which frames different multicast components and correlates them in a readable fashion. Then, based on this UML like class diagram, there is instantiated and detailed YANG model in Section 5. In other words, this document does not define any specific protocol model, instead, it depends on many existed multicast protocol models and relates several multicast information together to fulfill multicast service. 2. Design of the multicast model 2.1. Scope of Model This modelincludes multicast service keys and three layers: the multicast overlay, the transport layercan be used to configure andthe multicast underlay information.manage Multicastkeys include the features of multicast flow, such as(vpnid, multicast source and multicast group) information. Inservice. The operational state datacenter network, for fine-grainedcan be retrieved by this model. The subscription and push mechanism defined in [RFC8639] and [RFC8641] can be implemented by the user togathersubscribe to notifications on the data nodesbelongingin this model. The model contains all the basic configuration parameters to operate thesame virtual network, theremodel. Depending on the implementation choices, some systems mayneed VNI-related informationnot allow some of the advanced parameters toassist. Multicast overlay defines (ingress-node, egress-nodes)be configurable. The occasionally implemented parameters are modeled as optional features in this model. This model can be extended, and it has been structured in a way that such extensions can be conveniently made. 2.2. Specification The configuration data nodesinformation. If the transport layercover configurations. The container "multicast-model" isBIER, there may define BIER information including (Subdomain, ingress-node BFR-id, egress-nodes BFR-id). If no (ingress-node, egress-nodes) information are defined directly, there may need overlay multicast signaling technology, such as MLD or MVPN, to collect these nodes information. Multicast transport layer definesthetypetop level container in this data model. The presence oftransport technologies that can be usedthis container is expected toforward multicast flow, including BIER forwarding type, MPLS forwarding type, or PIM forwarding type and so on. One or several transport technologies could be defined atenable Multicast service functionality. The notification includes thesame time. As forerror reason and thedetailed parameters for each transport technology, this multicast YANGassociated data nodes. 3. Module Structure This modelcan invokeimports and augments thecorresponding protocolietf-routing YANG modelto define them. Multicast underlay defines the type of underlay technologies, such as OSPF, ISIS, BGP, PIM or BABELdefined in [RFC8349]. Both configuration data nodes andso on. One or several underlay technologies could bestate data nodes of [RFC8349] are augmented. The YANG data model definedatin this document conforms to thesame time if thereNetwork Management Datastore Architecture (NMDA) [RFC8342]. The operational state data isprotective requirement. As forcombined with thespecific parameters for each underlay technology, this multicast YANGassociated configuration datamodel can dependin thecorresponding protocol model to configure them as well. 3.same hierarchy [RFC8407]. 3.1. UMLClasslike Class Diagram for Multicast YANG data Model The following is a UML like diagram for Multicast YANG data Model.+-------------------++-----------+ +-----+Multi|keys |Multicast Model|+-------------------++-----------+ | |Group Addr | | +-----------+ ||Contain +-----------------------------------------+|Source Addr| +--------+-----------------+ | +-----------+ | | |+----------------- -+|+---------------------------+|VPN Info | | | +------+-------+ | +-----------++-------------------+ +----------------------+ +--------------------+ |Multi-keys| +-----+------+ |Multicast OverlayIng/Eg Nodes | |Multicast Transport|VNI Info | |Multicast Underlay|Overlay Tech| +--------------+ | +-----------++-------------------+ +----------------------+ +--------------------+ |Group Addr| +------------+ |Ingress Nodes ||Contain| | | MLD | +--------------+ |invoke| +------------+ |Egress Nodes | | Contain | |invoke +-----------+ +--------+ +-------+ +----+MVPN | +-------+------+ | +-----------+ |+----+ +----++------------+ | relate | | Multicast +----+|Source Addr| | | | || BGP | \|/ +-----+ Overlay | +------------+ +----------------+ | | | |MLD|Snooping| | BIER Nodes Info| | +-----------+ +------------++--------------+ +-----++----------------+ | | BFR|ID |+------+ +------+| +----------------+ | +--------+--+ +---------------+----------+----------+ |+------+ |VPN InfoMulticast |Contain ||Overlay Tech||Ing/Eg Nodes| |PIM| Model | | +--+---+ +---+----+ +--+---+ +--------+--+ | | MPLS | |BIER|TE |OSPF| BIER | | +---------+--+ +------+ +--------+ +------+ | |PIMMulticast |+-----------+ +------------+ +--------------+ +-----++----+ Transport | invoke +-----+ +----------+ | |+------+ +------+| | PIM |+------+ |VNI Info|Cisco Mode| | +---------+--+ +--+--+ +----+-----+ |MLD||Ingress Nodes|+----+|+-----+ +----+|+-----+ +-----------+ +------------+ +--------------+| | | | +---------------+-----------+ | | +--------------+---------+---------+ |MVPN||Egress Nodes|+----------+|+--------+ +-----+|+------+ +------------+ +--------------+ |Cisco Mode|||BIER-TE||BABEL|+--+---+ +--+---+ +--+--+ | +----------+-- |BGPOSPF | |BGPPIM | |BABEL| |relate +----------+|+--------+ +-----+Multicast | +------++------------+ \|/ +----++------+ +-----+ +----+|MLD-Snooping| +----------------+Underlay | invoke |+------------+|BIER Nodes Info|+------+ +------++----------------++----------+-- |BIERISIS | |ISISBGP | |BFR-ID+--+---+ +--+---+ |+------+ +------+ +----------------+| | +--------------+---------+ Figure2:3: UML like Class Diagram for Multicast YANG data Model4.3.2. Model Structure module: ietf-multicast-model +--rw multicast-model +--rw multicast-keys* [vpn-rd source-address group-address vni-type vni-value] +--rw vpn-rd rt-types:route-distinguisher +--rw source-address ip-multicast-source-address +--rw group-address rt-types:ip-multicast-group-address +--rw vni-type virtual-type +--rw vni-value uint32 +--rw multicast-overlay | +--rw ingress-egress | | +--rw ingress-node? inet:ip-address | | +--rw egress-nodes* [egress-node] | | +--rw egress-node inet:ip-address | +--rw bier-ids | | +--rw sub-domain? uint16 | | +--rw ingress-node? uint16 | | +--rw egress-nodes* [egress-node] | | +--rw egress-node uint16 | +--rwoverlay-tech-type? enumeration +--rw multicast-transport(overlay-tech-type)? |+--rw bier+--:(bgp) | +--:(evpn) |+--rw sub-domain? uint16+--:(mld) | | +--rw(encap-type)?mld-instance-group? rt-types:ip-multicast-group-address | +--:(mld-snooping) | +--:(mvpn) |+--:(mpls)+--:(pim) +--rw multicast-transport | +--rw (transport)? | +--:(bier) |+--:(eth)| +--rw bier | |+--:(ipv6)+--rw sub-domain? uint16 | | +--rw bitstringlength? uint16 | | +--rw set-identifier? uint16 | | +--rwecmp? boolean(encap-type)? | |+--rw frr? boolean+--:(mpls) | | +--:(eth) | | +--:(ipv6) | +--:(bier-te) | | +--rw bier-te | | +--rw sub-domain? uint16 | | +--rw bitstringlength? uint16 | | +--rw set-identifier? uint16 | | +--rw (encap-type)? | | | +--:(mpls) | | |+--:(non-mpls) |+--:(eth) |+--rw bitstringlength? uint16| |+--rw set-identifier? uint16+--:(ipv6) | | +--rwecmp? booleanbier-te-adj* uint16 | +--:(cisco-mode) |+--rw frr? boolean| +--rw cisco-mode | | +--rw p-group? rt-types:ip-multicast-group-address | +--:(mpls) |+--rw graceful-restart? boolean | | +--rw bfd? boolean| +--rw mpls | | +--rw (mpls-tunnel-type)? | | +--:(mldp) | | | +--rw mldp-tunnel-id? uint32 | | | +--rwmldp-frr? boolean | | | +--rwmldp-backup-tunnel? boolean | | +--:(p2mp-te) | | +--rw te-tunnel-id? uint32 | | +--rwte-frr? boolean | | +--rwte-backup-tunnel? boolean |+--rw pim | +--rw graceful-restart? boolean+--:(pim) | +--rwbfd? booleanpim +--rw multicast-underlay +--rwunderlay-requirement? boolean +--rw bgp +--rw ospf(underlay)? +--:(bgp) +--:(ospf) | +--rwtopology-id? uint8 +--rw isisospf | +--rwtopology-id? uint16 +--rw babeltopology? -> /rt:routing/control-plane-protocols /control-plane-protocol/ospf:ospf /topologies/topology/name +--:(isis) +--:(babel) notifications: +---n head-end-event +--ro event-type? enumeration +--ro multicast-key | +--ro vpn-rd? rt-types:route-distinguisher | +--ro source-address? ip-multicast-source-address | +--ro group-address? rt-types:ip-multicast-group-address | +--ro vni-type? virtual-type | +--ro vni-value? uint32 +--rooverlay-tech-type? enumeration(overlay-tech-type)? | +--:(bgp) | +--:(evpn) | +--:(mld) | | +--rotransport-tech? enumerationmld-instance-group? rt-types:ip-multicast-group-address | +--:(mld-snooping) | +--:(mvpn) | +--:(pim) +--rounderlay-tech? enumeration 5. Multicast YANG data Model <CODE BEGINS> file "ietf-multicast-model.yang" module ietf-multicast-model { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-multicast-model"; prefix multicast-model; import ietf-inet-types { prefix "inet"; reference "RFC6991"; } import ietf-routing-types { prefix rt-types; reference "RFC8294"; } organization " IETF MBONED( MBONE Deployment ) Working Group"; contact "WG List: <mailto:mboned@ietf.org> Editor: Zheng Zhang <mailto:zzhang_ietf@hotmail.com> Editor: Cui Wang <mailto:lindawangjoy@gmail.com> Editor: Ying Cheng <mailto:chengying10@chinaunicom.cn> Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com> Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com> "; description "The module defines thetransport-tech | +--ro (transport)? | +--:(bier) | | +--ro bier | | +--ro sub-domain? uint16 | | +--ro bitstringlength? uint16 | | +--ro set-identifier? uint16 | | +--ro (encap-type)? | | +--:(mpls) | | +--:(eth) | | +--:(ipv6) | +--:(bier-te) | | +--ro bier-te | | +--ro sub-domain? uint16 | | +--ro bitstringlength? uint16 | | +--ro set-identifier? uint16 | | +--ro (encap-type)? | | | +--:(mpls) | | | +--:(eth) | | | +--:(ipv6) | | +--ro bier-te-adj* uint16 | +--:(cisco-mode) | | +--ro cisco-mode | | +--ro p-group? rt-types:ip-multicast-group-address | +--:(mpls) | | +--ro mpls | | +--ro (mpls-tunnel-type)? | | +--:(mldp) | | | +--ro mldp-tunnel-id? uint32 | | | +--ro mldp-backup-tunnel? boolean | | +--:(p2mp-te) | | +--ro te-tunnel-id? uint32 | | +--ro te-backup-tunnel? boolean | +--:(pim) | +--ro pim +--ro underlay-tech +--ro (underlay)? +--:(bgp) +--:(ospf) | +--ro ospf | +--ro topology? -> /rt:routing/control-plane-protocols /control-plane-protocol/ospf:ospf /topologies/topology/name +--:(isis) +--:(babel) 3.3. Multicast YANGdefinitions fordata model Configuration This model is used with other protocol data model to provide multicast service. This model includes multicast servicemanagement. Copyright (c) 2018 IETF Trustkeys and three layers: thepersons identified as authors ofmulticast overlay, thecode. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to,transport layer andsubject to the license terms contained in,theSimplified BSD License set forth in Section 4.c ofmulticast underlay information. Multicast keys include theIETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This versionfeatures ofthis YANG module has relationship with overallmulticasttechnologies,flow, suchas PIM(RFC7761), BIER(RFC8279), MVPN(RFC6513),as(vpnid, multicast source andso on; see the RFC itself for full legal notices."; revision 2018-07-30 { description "Initial revision."; reference "RFC XXXX: A YANG Data Model for multicast YANG. RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 8279: Multicast Using Bit Index Explicit Replication (BIER); RFC 6513: Multicast in MPLS/BGP IP VPNs"; } /*key*/ typedef ip-multicast-source-address { type union { type rt-types:ipv4-multicast-source-address; type rt-types:ipv6-multicast-source-address; } description "This type represents a version-neutral IPmulticastsource address. The format of the textual representation implies the IP version."; reference "RFC8294: Common YANG Data Typesgroup) information. In data center network, for fine-grained to gather theRouting Area."; } typedef virtual-type { type enumeration { enum "vxlan" { description "The vxlan type. See more detail in RFC7348."; } enum "virtual subnet" { description "The nvgre type. See more detail in RFC7637."; } enum "vni" { description "The geneve type. See more detail in [ietf-nvo3-geneve]."; } } description "The collection ofnodes belonging to the same virtualnetwork type."; } grouping general-multicast-key { description "The general multicast keys. They are usednetwork, there may need VNI-related information todistinguish differentassist. Multicast overlay defines (ingress-node, egress-nodes) nodes information. If the transport layer is BIER, there may define BIER information including (Subdomain, ingress-node BFR-id, egress-nodes BFR-id). If no (ingress-node, egress-nodes) information are defined directly, there may need overlay multicastservice."; leaf vpn-rd { type rt-types:route-distinguisher; description "A Route Distinguisher usedsignaling technology, such as MLD or MVPN, todistinguish routes from different MVPNs (RFC 6513)."; reference "RFC8294: Common YANG Data Types forcollect these nodes information. Multicast transport layer defines theRouting Area."; } leaf source-address {typeip-multicast-source-address; description "The IPv4/IPv6 source addressofmulticast flow. The value set to zero meanstransport technologies thatthe receiver interests in all source that relevantcan be used toone given group."; } leaf group-address {forward multicast flow, including BIER forwarding type, MPLS forwarding type, or PIM forwarding typert-types:ip-multicast-group-address; description "The IPv4/IPv6 group address ofand so on. One or several transport technologies could be defined at the same time. As for the detailed parameters for each transport technology, this multicastflow. ThisYANG data model can invoke the corresponding protocol model to define them. Multicast underlay defines the typerepresents a version-neutral IPof underlay technologies, such as OSPF, ISIS, BGP, PIM or BABEL and so on. One or several underlay technologies could be defined at the same time if there is protective requirement. As for the specific parameters for each underlay technology, this multicastgroup address.YANG data model can depend the corresponding protocol model to configure them as well. Theformatconfiguration modeling branch is composed of thetextual representation implieskeys, overlay layer, transport layer and underlay layer. 3.4. Multicast YANG data model State Multicast model states are theIP version.";same with the configuration. 3.5. Multicast YANG data model Notification The defined Notifications include the events of head end nodes. Like head node failer, overlay/ transport/ underlay module loading/ unloading. And the potential failer about some multicast flows and associated overlay/ transport/ underlay technologies. 4. Multicast YANG data Model This module references [RFC1195], [RFC2328], [RFC4271], [RFC4541], [RFC4875], [RFC5340], [RFC6037], [RFC6388], [RFC6513], [RFC6991], [RFC7348], [RFC7432], [RFC7637], [RFC7716], [RFC7761], [RFC8279], [RFC8294], [RFC8296], [RFC8343], [RFC8344], [RFC8349], [RFC8639], [RFC8641], [I-D.ietf-pim-yang], [I-D.ietf-bier-bier-yang], [I-D.ietf-bier-te-arch], [I-D.ietf-nvo3-geneve], [I-D.ietf-bier-mld], [I-D.ietf-bess-evpn-bum-procedure-updates], [I-D.ietf-bier-evpn], [I-D.zhang-bier-bierin6], [I-D.ietf-babel-rfc6126bis], [I-D.ietf-bier-pim-signaling]. <CODE BEGINS> file "ietf-multicast-model@2020-03-06.yang" module ietf-multicast-model { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-multicast-model"; prefix multicast-model; import ietf-inet-types { prefix "inet"; reference"RFC8294:"RFC 6991: Common YANG Data Types"; } import ietf-routing-types { prefix "rt-types"; reference "RFC 8294: Common YANG Data Types for the RoutingArea.";Area"; }leaf vni-typeimport ietf-routing {type virtual-type; description "The type of virtual network identifier. Includes the Vxlan, NVGRE and Geneve. This value and vni-value is used to indicate a specific virtual multicast service.";prefix "rt"; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; }leaf vni-valueimport ietf-ospf {type uint32;prefix "ospf"; reference "I-D.ietf-ospf-yang: YANG Data Model for OSPF Protocol"; } organization " IETF MBONED (MBONE Deployment) Working Group"; contact "WG List: <mailto:mboned@ietf.org> Editor: Zheng Zhang <mailto:zzhang_ietf@hotmail.com> Editor: Cui Wang <mailto:lindawangjoy@gmail.com> Editor: Ying Cheng <mailto:chengying10@chinaunicom.cn> Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com> Editor: Mahesh Sivakumar <mailto:sivakumar.mahesh@gmail.com> "; // RFC Ed.: replace XXXX with actual RFC number and remove // this note description "Thevaluemodule defines the YANG definitions for multicast service management. Copyright (c) 2020 IETF Trust and the persons identified as authors ofVxlan network identifier, virtual subnet ID or virtual net identifier. This valuethe code. All rights reserved. Redistribution andvni-typeuse in source and binary forms, with or without modification, isusedpermitted pursuant to, and subject toindicate a specific virtual multicast service."; } } /*overlay*/ grouping overlay-technology { leaf overlay-tech-type { type enumeration { enum mld { description "MLD technology is used for multicast overlay. See more detailthe license terms contained in, the Simplified BSD License set forth in[draft-ietf-bier-mld]"; } enum mvpn { description "MVPN technologySection 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module isusedpart of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself formulticast overlay. See more detailfull legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' inRFC6513."; } enum bgpthis document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2020-03-06 { description"BGP technology is used"Initial revision."; reference "RFC XXXX: A YANG Data Model for multicastoverlay. See more detail in RFC7716.";YANG."; }enum mld-snooping/* *typedef */ typedef ip-multicast-source-address { type union { type rt-types:ipv4-multicast-source-address; type rt-types:ipv6-multicast-source-address; } description"MLD snooping technology"This type represents a version-neutral IP multicast source address. The format of the textual representation implies the IP version."; reference "RFC8294: Common YANG Data Types for the Routing Area."; } typedef virtual-type { type enumeration { enum vxlan { description "The VXLAN encapsulation is used formulticast overlay. See more detail in RFC4541.";flow encapsulation."; reference "RFC 7348: Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks."; } enum nvgre { description "The NVGRE encapsulation is used for flow encapsulation."; reference "RFC 7637: NVGRE: Network Virtualization Using Generic Routing Encapsulation."; } enum geneve { description "Thepossible overlay technologiesGENEVE encapsulation is used formulticast service.";flow encapsulation."; reference "I-D.ietf-nvo3-geneve: Geneve: Generic Network Virtualization Encapsulation."; } } description "Thepossible overlay technologiesencapsulation type used formulticast service.";the flow. In case the virtual type is set, the associated vni-value should also be defined."; } // virtual-type /* * Identities */ identity multicast-model { base rt:control-plane-protocol; description "Identity for the Multicast model."; } groupingmulticast-overlaygeneral-multicast-key { description "The general multicastoverlay information, includes ingress node and egress nodes' information."; container ingress-egresskeys. They are used to distinguish different multicast service."; leaf vpn-rd { type rt-types:route-distinguisher; description"The ingress and egress nodes address collection.";"A Route Distinguisher used to distinguish routes from different MVPNs."; reference "RFC 8294: Common YANG Data Types for the Routing Area. RFC 6513: Multicast in MPLS/BGP IP VPNs."; } leafingress-nodesource-address { typeinet:ip-address;ip-multicast-source-address; description "TheipIPv4/IPv6 source address ofingress node for one or morethe multicast flow.Or the ingress node of MVPN and BIER. In MVPN, this isThe value set to zero means that theaddress of ingress PE;receiver interests inBIER, this is the BFR-prefix of ingress nodes.";all source that relevant to one given group."; }list egress-nodesleaf group-address {key "egress-node";type rt-types:ip-multicast-group-address; description "Theegress multicast nodesIPv4/IPv6 group address of multicast flow.Or the egress nodeThis type represents a version-neutral IP multicast group address. The format ofMVPN and BIER. In MVPN, this istheaddress of egress PE; in BIER, this istextual representation implies theBFR-prefixIP version."; reference "RFC8294: Common YANG Data Types for the Routing Area."; } leaf vni-type { type virtual-type; description "The type ofingress nodes.";virtual network identifier. Includes the Vxlan, NVGRE and Geneve. This value and vni-value is used to indicate a specific virtual multicast service."; } leafegress-nodevni-value { typeinet:ip-address;uint32; description "Theip-addressvalue ofegressVxlan network identifier, virtual subnet ID or virtual net identifier. This value and vni-type is used to indicate a specific virtual multicastnodes. See more details in RFC6513.";service."; } } // general-multicast-key grouping encap-type { description "The encapsulation type used for flow forwarding."; choice encap-type { case mpls { description "The BIER forwarding depends on mpls."; reference "RFC 8296: Encapsulation for Bit Index Explicit Replication (BIER) in MPLS and Non-MPLS Networks."; }container bier-idscase eth { description "TheBFR-ids of ingressBIER forwarding depends on ethernet."; reference "RFC 8296: Encapsulation for Bit Index Explicit Replication (BIER) in MPLS andegressNon-MPLS Networks."; } case ipv6 { description "The BIERnodesforwarding depends on IPv6."; reference "I-D.zhang-bier-bierin6: BIER in IPv6 (BIERin6)"; } description "The encapsulation type in BIER."; } } // encap-type grouping bier-key { description "The key parameters set forone or more multicast flows.";BIER/BIER TE forwarding."; reference "RFC 8279: Multicast Using Bit Index Explicit Replication (BIER)."; leaf sub-domain { type uint16; description "Thesub-domainsubdomain id thatthisthe multicast flow belongsto. See more details in RFC8279.";to."; } leafingress-nodebitstringlength { type uint16; description "Theingress node of multicast flow. This is the BFR-id of ingress nodes. See more details in RFC8279.";bitstringlength used by BIER forwarding."; }list egress-nodes { key "egress-node"; description "This ID information of one adjacency. See more details in RFC8279.";leafegress-nodeset-identifier { type uint16; description "TheBFR-ids of egressset identifier used by the multicastBIER nodes. See more details in RFC8279."; } }flow."; } usesoverlay-technology;encap-type; }/*transport*/groupingtransport-pim { description "The requirement information of pim transportion. PIM protocol is defined in RFC7761."; leaf graceful-restart { type boolean; description "If the graceful restart function should be supported."; } leaf bfd { type boolean; description "If the bfd function should be supported."; } } grouping multicast-transporttransport-tech { choice transport { description "The selected transportinformation of multicast service.";technology."; container bier { description "The transport technology is BIER. The BIER technology is introduced in RFC8279. The parameter is consistent with the definition in[ietf-bier-bier-yang]."; leaf sub-domain { type uint16; description "The subdomain id that the multicast flow belongs to. See more details in RFC8279."; } choice encap-type { case mpls { description "TheBIERforwarding depends on mpls. See more details in RFC8296."; } case eth { description "TheYANG data model."; reference "RFC 8279: Multicast Using Bit Index Explicit Replication (BIER). I-D.ietf-bier-bier-yang: YANG Data Model for BIERforwarding depends on ethernet. See more details in RFC8296.";Protocol."; uses bier-key; }case ipv6container bier-te { description "TheBIER forwarding depends on IPv6."; } description "The encapsulation type in BIER."; } leaf bitstringlengthtransport technology is BIER-TE."; reference "I-D.ietf-bier-te-arch: Traffic Engineering for Bit Index Explicit Replication (BIER-TE)"; uses bier-key; leaf-list bier-te-adj { type uint16; description "Thebitstringlengthadjacencies ID usedby BIER forwarding. See more detailsinRFC8279.";BIER TE forwarding encapsulation."; }leaf set-identifier { type uint16; description "The set identifier used by the multicast flow. See more details in RFC8279.";}leaf ecmpcontainer cisco-mode {type boolean;description "Thecapability of ECMP. If this valuetransport technology isset to true, ecmp mechanism should be enabled. See more detailscisco-mode: Cisco MDT."; reference "RFC 6037: Cisco Systems' Solution for Multicast inRFC8279."; }BGP/MPLS IP VPNs"; leaffrrp-group { typeboolean;rt-types:ip-multicast-group-address; description "Thecapabilityaddress offast re-route. If this valuep-group. It issetused totrue, fast re-route mechanism should be enabled. See more details in RFC8279.";encapsulate and forward flow according to multicast tree from ingress node to egress nodes."; } uses transport-pim; } containerbier-templs { description "The transport technology isBIER-TE. BIER-TE technology is introducedmpls. MVPN overlay can use mpls tunnel technologies to build transport layer."; reference "RFC 6513: Multicast in[ietf-bier-te-arch]."; leaf sub-domain { type uint16; description "The subdomain id that the multicast flow belongs to. See more details in [ietf-bier-te-arch]."; } choice encap-type { case mpls { description "The BIER-TE forwarding depends on mpls. See more details in [ietf-bier-te-arch]."; } case non-mpls { description "The BIER-TE forwarding depends on non-mpls. See more details in [ietf-bier-te-arch]."; } description "The encapsulation type in BIER-TE."; } leaf bitstringlength { type uint16; description "The bitstringlength used by BIER-TE forwarding. See more details in [ietf-bier-te-arch]."; } leaf set-identifier { type uint16; description "The set identifier used by the multicast flow, especially in BIER TE. See more details in [ietf-bier-te-arch]."; } leaf ecmp { type boolean; description "The capability of ECMP. If this value is set to true, ecmp mechanism should be enabled. See more details in [ietf-bier-te-arch]."; } leaf frr { type boolean; description "The capability of fast re-route. If this value is set to true, fast re-route mechanism should be enabled. See more details in [ietf-eckert-bier-te-frr]."; } } container cisco-mode { description "The transport technology is cisco-mode. The Cisco MDT multicast mechanism is defined in RFC6037."; leaf p-group { type rt-types:ip-multicast-group-address; description "The address of p-group. It is used to encapsulate and forward flow according to multicast tree from ingress node to egress nodes."; } uses transport-pim; } container mpls { description "The transport technology is mpls. MVPN overlay can use mpls tunnel technologies to build transport layer. The usage is introduced in RFC6513."; choice mpls-tunnel-type { case mldpMPLS/BGP IP VPNs."; choice mpls-tunnel-type { case mldp { description "The mldptunnel. The protocol detail is defined in RFC6388.";tunnel."; reference "RFC 6388: Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths."; leaf mldp-tunnel-id { type uint32; description "The tunnel id that correspond thisflow. The detail is defined in RFC6388."; } leaf mldp-frr { type boolean; description "If the fast re-route function should be supported. The detail is defined in RFC6388.";flow."; } leaf mldp-backup-tunnel { type boolean; description "If the backup tunnel function should besupported. The detail is defined in RFC6388.";supported."; } } case p2mp-te { description "The p2mp tetunnel. The protocol detail is defined in RFC4875.";tunnel."; reference "RFC 4875: Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)."; leaf te-tunnel-id { type uint32; description "The tunnel id that correspond thisflow. The detail is defined in RFC4875.";flow."; } leafte-frrte-backup-tunnel { type boolean; description "If thefast re-routebackup tunnel function should besupported. The detail is defined in RFC4875."; } leaf te-backup-tunnel { type boolean; description "If the backup tunnel function should be supported. The detail is defined in RFC4875.";supported."; } } description "The collection types of mpls tunnels"; } } // mpls container pim {uses transport-pim;description "The transport technology is PIM. PIM[RFC7761]is used commonly in traditional network."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)."; uses transport-pim; } }/*underlay*/// choice } // transport-tech groupingmulticast-underlayunderlay-tech {description "The underlay information relevant multicast service. Underlay protocols are used to build transport layer. It is unnecessary in traditional network that use PIM [RFC7761] to build multicast tree. Diversitychoice underlayprotocols can be choosed to build BIER transport layer."; leaf underlay-requirement{type boolean; description "If the underlay technology is required."; } containercase bgp { description "The underlay technology is BGP. BGP protocolRFC4271should betriggeredused to run if BGP is used as underlay protocol."; reference "RFC 4271: A Border Gateway Protocol 4 (BGP-4)"; } container ospf { description "The underlay technology is OSPF. OSPF protocolRFC2328should be triggered to run if OSPF is used as underlay protocol."; reference "RFC 2328: OSPF Version 2. RFC 5340: OSPF for IPv6. I-D.ietf-ospf-yang: YANG Data Model for OSPF Protocol."; leaftopology-idtopology { typeuint8;leafref { path "/rt:routing/rt:control-plane-protocols/" + "rt:control-plane-protocol/ospf:ospf/" + "ospf:topologies/ospf:topology/ospf:name"; } description "The designed topologyidname of ospfinstance. The topology id can be assigned In some situations. More details is defined in RFC2328.";protocol."; } }containercase isis { description "The underlay technology is ISIS. ISIS protocol should be triggered to run if ISIS is used as underlay protocol.Details is defined in RFC1195."; leaf topology-id { type uint16; description "The topology id of isis instance. The topology idAnd the associated extensions can beassigned In some situations."; }used."; reference "RFC 1195: Use of OSI IS-IS for Routing in TCP/IP and Dual Environments"; }containercase babel { description "The underlay technology is Babel. Babel protocol should be triggered to run if Babel is used as underlay protocol."; reference "I-D.ietf-babel-rfc6126bis: The Babel Routing Protocol."; } }container multicast-model// choice } // underlay-tech /*overlay*/ grouping overlay-tech { choice overlay-tech-type { case bgp { description"The model of"BGP technology is used for multicastYANG data. Include keys, overlay, transport and underlay."; list multicast-keys{ key "vpn-rd source-address group-address vni-type vni-value"; uses general-multicast-key; container multicast-overlayoverlay."; reference "RFC 7716: Global Table Multicast with BGP Multicast VPN (BGP-MVPN) Procedures."; } case evpn { description"The overlay information of"EVPN technology is used for multicastservice. Overlayoverlay."; reference "RFC 7432: BGP MPLS-Based Ethernet VPN. I-D.ietf-bess-evpn-bum-procedure-updates: Updates on EVPN BUM Procedures. I-D.ietf-bier-evpn: EVPN BUM Using BIER."; } case mld { description "MLD technology is usedto exchangefor multicastflows information.overlay."; reference "I-D.ietf-bier-mld: BIER Ingress Multicast Flow Overlaytechnology may not beusing Multicast Listener Discovery Protocols."; leaf mld-instance-group { type rt-types:ip-multicast-group-address; description "The multicast address usedin SDN controlled completelyfor multiple MLD instance support."; } } case mld-snooping { description "MLD snooping technology is used for multicast overlay."; reference "RFC 4541: Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches."; } case mvpn { description "MVPN technology is used for multicast overlay."; reference "RFC 6513: Multicast in MPLS/BGP IP VPNs."; } case pim { description "PIM technology is used for multicast overlay."; reference "I-D.ietf-bier-pim-signaling: PIM Signaling Through BIER Core."; } description "The overlay technology used for multicast service."; } description "The overlay technology used for multicast service."; } // overlay-tech /*transport*/ grouping transport-pim { description "The requirement information of pim transportion."; reference "RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)."; } //transport-pim /*underlay*/ container multicast-model { description "The model of multicast YANG data. Include keys, overlay, transport and underlay."; list multicast-keys{ key "vpn-rd source-address group-address vni-type vni-value"; uses general-multicast-key; container multicast-overlay { description "The overlay information of multicast service. Overlay technology is used to exchange multicast flows information. Overlay technology may not be used in SDN controlled completely situation, but it can be used in partial SDN controlled situation or non-SDN controlled situation. Different overlaytechnologytechnologies can be choosed according to different deploy consideration.";uses multicast-overlay; }containermulticast-transportingress-egress { description "Thetransportion of multicast service. Transport protocol is responsible for delivering multicast flows fromingress and egress nodestoaddress collection. The ingress node may use the egress nodeswith or without specific encapsulation. Different transport technology can be choosed accordingset directly todifferent deploy consideration. Once aencapsulate the multicast flow by transporttechnology is choosed, associated protocol should be triggered to run."; uses multicast-transport; } container multicast-underlaytechnology."; leaf ingress-node { type inet:ip-address; description "Theunderlayip address of ingress node for one or more multicastservice. Underlay protocolflow. Or the ingress node of MVPN and BIER. In MVPN, this isused to build transport layer. Underlay protocol need not be assigned in ordinary network since existed underlay protocol fits well, but it can be assignedthe address of ingress PE; inparticular networks for better controll. Once a underlay technologyBIER, this ischoosed, associated protocol should be triggered to run."; uses multicast-underlay;the BFR-prefix of ingress nodes."; } list egress-nodes { key "egress-node"; description "Themodelegress multicast nodes of the multicastYANG data. Include keys, overlay, transportflow. Or the egress node of MVPN andunderlay."; } } /*Notifications*/ notification head-end-event {BIER. In MVPN, this is the address of egress PE; in BIER, this is the BFR-prefix of ingress nodes."; leafevent-typeegress-node { typeenumeration { enum down {inet:ip-address; description"There is something wrong with head end node, and head end node can't work properlay.";"The ip-address set of egress multicast nodes."; }enum module-loaded} } container bier-ids { description"Some new modules that"The BFR-ids of ingress and egress BIER nodes for one or more multicast flows. This overlay is used with BIER transport technology. The egress nodes set can be usedbyto encapsulate the multicastflows finish loading."; } enum module-unloadedflow directly in the ingress node."; reference "RFC 8279: Multicast Using Bit Index Explicit Replication (BIER)"; leaf sub-domain { type uint16; description"Some new modules"The sub-domain thatcan be used bythis multicastflows have been unloaded."; }flow belongs to."; } leaf ingress-node { type uint16; description"Event type.";"The ingress node of multicast flow. This is the BFR-id of ingress nodes."; }container multicast-keylist egress-nodes {uses general-multicast-key;key "egress-node"; description "Theassociatedegress nodes of multicastkeys that are influenced by head end node failer."; } uses overlay-technology;flow."; leaftransport-techegress-node { typeenumeration { enum bier {uint16; description"BIER(RFC8279) technology can be used to forward"The BFR-ids of egress multicastflows.";BIER nodes."; }enum bier-te} } uses overlay-tech; } container multicast-transport { description"BIER-TE(draft-ietf-bier-te-arch)"The transportion of multicast service. Transport protocol is responsible for delivering multicast flows from ingress nodes to egress nodes with or without specific encapsulation. Different transport technology can beusedchoosed according toforward multicast flows.";different deploy consideration. Once a transport technology is choosed, associated protocol should be triggered to run."; uses transport-tech; }enum cisco-modecontainer multicast-underlay { description"Cisco mode(RFC6037) technology"The underlay of multicast service. Underlay protocol is used to build transport layer. Underlay protocol need not be assigned in ordinary network since existed underlay protocol fits well, but it can beusedassigned in particular networks for better controll. Once a underlay technology is choosed, associated protocol should be triggered toforwardrun."; uses underlay-tech; } description "The model of multicastflows.";YANG data. Include keys, overlay, transport and underlay."; } } /*Notifications*/ notification head-end-event { leaf event-type { type enumeration { enummldpdown { description"MLDP(RFC6388) technology can be used to forward multicast flows.";"There is something wrong with head end node, and head end node can't work properlay."; } enump2mp-temodule-loaded { description"P2MP TE(RFC4875) technology"The new modules that can be usedto forwardby multicastflows.";flows have been loaded."; } enumpimmodule-unloaded { description"PIM(RFC7761) technology"The new modules that can be usedto forwardby multicastflows.";flows have been unloaded."; } } description "Event type."; } container multicast-key { uses general-multicast-key; description "The associated multicast keys that are influenced by head end node failer."; } uses overlay-tech; container transport-tech { description "The modules can be used to forward multicast flows."; uses transport-tech; }leafcontainer underlay-tech {type enumeration { enum bgp {description"BGP protocol can be used to build multicast transport layer."; } enum ospf { description "OSPF protocol can be used to build multicast transport layer."; } enum isis { description "ISIS protocol can be used to build multicast transport layer."; } enum babel { description "Babel protocol can be used to build multicast transport layer."; } } description "The modules can be"There is something wrong with the module which is used to build multicast transport layer."; uses underlay-tech; } description "Notification events for the head end nodes. Like head node failer, overlay/ transport/ underlay module loading/ unloading. And the potential failer about some multicast flows andassociated overlay/ transport/ underlay technologies."; } } <CODE ENDS> 6. Notifications The defined Notifications include the events of head end nodes. Like head node failer, overlay/ transport/ underlay module loading/ unloading. And the potential failer about some multicast flowsassociated overlay/ transport/ underlay technologies."; } } <CODE ENDS> 5. Security Considerations The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446]. The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are data nodes and their sensitivity/vulnerability: Under /rt:routing/rt:control-plane-protocols/multicast-model, multicast-model These data nodes in this model specifies the configuration for the multicast service at the top level. Modifying the configuration can cause multicast service to be deleted or reconstructed. Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the data nodes and their sensitivity/vulnerability: /rt:routing/rt:control-plane-protocols/multicast-model, Unauthorized access to any data node of the above tree can disclose the operational state information of multicast service on this device. 6. IANA Considerations RFC Ed.: Please replace all occurrences of 'XXXX' with the actual RFC number (and remove this note). The IANA is requested to assign one new URI from the IETF XML registry [RFC3688]. Authors are suggesting the following URI: URI: urn:ietf:params:xml:ns:yang:ietf-multicast-model Registrant Contact: The IESG XML: N/A, the requested URI is an XML namespace This document also requests one new YANG module name in the YANG Module Names registry [RFC6020] with the following suggestion: name: ietf-multicast-model namespace: urn:ietf:params:xml:ns:yang:ietf-multicast-model prefix: multicast-model reference: RFC XXXX 7. Acknowledgements The authors would like to thank Stig Venaas, Jake Holland, Min Gu for their valuable comments and suggestions. 8. References 8.1. Normative References [RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, DOI 10.17487/RFC1195, December 1990, <https://www.rfc-editor.org/info/rfc1195>. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, April 1998, <https://www.rfc-editor.org/info/rfc2328>. [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <https://www.rfc-editor.org/info/rfc4271>. [RFC4875] Aggarwal, R., Ed., Papadimitriou, D., Ed., and S. Yasukawa, Ed., "Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to- Multipoint TE Label Switched Paths (LSPs)", RFC 4875, DOI 10.17487/RFC4875, May 2007, <https://www.rfc-editor.org/info/rfc4875>. [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, <https://www.rfc-editor.org/info/rfc5340>. [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>. [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>. [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, <https://www.rfc-editor.org/info/rfc6242>. [RFC6388] Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B. Thomas, "Label Distribution Protocol Extensions for Point- to-Multipoint and Multipoint-to-Multipoint Label Switched Paths", RFC 6388, DOI 10.17487/RFC6388, November 2011, <https://www.rfc-editor.org/info/rfc6388>. [RFC6513] Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/ BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February 2012, <https://www.rfc-editor.org/info/rfc6513>. [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>. [RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February 2015, <https://www.rfc-editor.org/info/rfc7432>. [RFC7716] Zhang, J., Giuliano, L., Rosen, E., Ed., Subramanian, K., and D. Pacella, "Global Table Multicast with BGP Multicast VPN (BGP-MVPN) Procedures", RFC 7716, DOI 10.17487/RFC7716, December 2015, <https://www.rfc-editor.org/info/rfc7716>. [RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I., Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March 2016, <https://www.rfc-editor.org/info/rfc7761>. [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>. [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://www.rfc-editor.org/info/rfc7951>. [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, <https://www.rfc-editor.org/info/rfc8040>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [RFC8279] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A., Przygienda, T., and S. Aldrin, "Multicast Using Bit Index Explicit Replication (BIER)", RFC 8279, DOI 10.17487/RFC8279, November 2017, <https://www.rfc-editor.org/info/rfc8279>. [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, <https://www.rfc-editor.org/info/rfc8294>. [RFC8296] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A., Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation for Bit Index Explicit Replication (BIER) in MPLS and Non- MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, January 2018, <https://www.rfc-editor.org/info/rfc8296>. [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, <https://www.rfc-editor.org/info/rfc8340>. [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, <https://www.rfc-editor.org/info/rfc8341>. [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., andassociated overlay/ transport/ underlay technologies. 7. Acknowledgements The authors would like to thank Stig Venaas, Jake Holland, Min GuR. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, <https://www.rfc-editor.org/info/rfc8342>. [RFC8343] Bjorklund, M., "A YANG Data Model fortheir valuable commentsInterface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>. [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>. [RFC8349] Lhotka, L., Lindem, A., andsuggestions. 8. NormativeY. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>. [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>. 8.2. Informative References [I-D.ietf-babel-rfc6126bis] Chroboczek, J. and D. Schinazi, "The Babel Routing Protocol", draft-ietf-babel-rfc6126bis-17 (work in progress), February 2020. [I-D.ietf-bess-evpn-bum-procedure-updates] Zhang, Z., Lin, W., Rabadan, J., Patel, K., and A. Sajassi, "Updates on EVPN BUM Procedures", draft-ietf- bess-evpn-bum-procedure-updates-08 (work in progress), November 2019. [I-D.ietf-bier-bier-yang] Chen, R., hu, f., Zhang, Z., dai.xianxian@zte.com.cn, d., and M. Sivakumar, "YANG Data Model for BIER Protocol",draft-ietf-bier-bier-yang-05draft-ietf-bier-bier-yang-06 (work in progress),MayFebruary 2020. [I-D.ietf-bier-evpn] Zhang, Z., Przygienda, T., Sajassi, A., and J. Rabadan, "EVPN BUM Using BIER", draft-ietf-bier-evpn-02 (work in progress), November 2019. [I-D.ietf-bier-mld] Pfister, P., Wijnands, I., Venaas, S., Wang, C., Zhang, Z., and M. Stenberg, "BIER Ingress Multicast Flow Overlay using Multicast Listener Discovery Protocols", draft-ietf- bier-mld-04 (work in progress), March 2020. [I-D.ietf-bier-pim-signaling] Bidgoli, H., Kotalwar, J., Xu, F., mishra, m., Zhang, Z., and A. Dolganow, "PIM Signaling Through BIER Core", draft- ietf-bier-pim-signaling-08 (work in progress), November 2019. [I-D.ietf-bier-te-arch] Eckert, T., Cauchie, G., and M. Menth,"Traffic"Path Engineering for Bit Index Explicit Replication (BIER-TE)",draft-ietf-bier-te-arch-03draft-ietf- bier-te-arch-06 (work in progress),JulyFebruary 2020. [I-D.ietf-nvo3-geneve] Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic Network Virtualization Encapsulation", draft-ietf- nvo3-geneve-14 (work in progress), September 2019. [I-D.ietf-ospf-yang] Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, "YANG Data Model for OSPF Protocol", draft-ietf-ospf- yang-29 (work in progress), October 2019. [I-D.ietf-pim-yang] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu, Y., and f. hu, "A YANG Data Model for Protocol Independent Multicast (PIM)", draft-ietf-pim-yang-17 (work in progress),May 2018. [RFC6020] Bjorklund,May 2018. [I-D.zhang-bier-bierin6] Zhang, Z., Przygienda, T., Wijnands, I., Bidgoli, H., and M. McBride, "BIER in IPv6 (BIERin6)", draft-zhang-bier- bierin6-04 (work in progress), January 2020. [RFC3688] Mealling, M.,Ed., "YANG - A Data Modeling Language"The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-editor.org/info/rfc3688>. [RFC4541] Christensen, M., Kimball, K., and F. Solensky, "Considerations forthe Network ConfigurationInternet Group Management Protocol(NETCONF)",(IGMP) and Multicast Listener Discovery (MLD) Snooping Switches", RFC6020,4541, DOI10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.10.17487/RFC4541, May 2006, <https://www.rfc-editor.org/info/rfc4541>. [RFC6037] Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco Systems' Solution for Multicast in BGP/MPLS IP VPNs", RFC 6037, DOI 10.17487/RFC6037, October 2010, <https://www.rfc-editor.org/info/rfc6037>.[RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG Data Model Documents", RFC 6087, DOI 10.17487/RFC6087, January 2011, <https://www.rfc-editor.org/info/rfc6087>. [RFC6241] Enns, R., Ed., Bjorklund,[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M.,Ed., Schoenwaelder, J., Ed.,andA. Bierman, Ed., "Network Configuration Protocol (NETCONF)",C. Wright, "Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks", RFC6241,7348, DOI10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>. [RFC6513] Rosen, E.,10.17487/RFC7348, August 2014, <https://www.rfc-editor.org/info/rfc7348>. [RFC7637] Garg, P., Ed. andR. Aggarwal,Y. Wang, Ed.,"Multicast in MPLS/ BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February 2012, <https://www.rfc-editor.org/info/rfc6513>. [RFC7223] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 7223, DOI 10.17487/RFC7223, May 2014, <https://www.rfc-editor.org/info/rfc7223>. [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management","NVGRE: Network Virtualization Using Generic Routing Encapsulation", RFC7277,7637, DOI10.17487/RFC7277, June 2014, <https://www.rfc-editor.org/info/rfc7277>. [RFC8177] Lindem,10.17487/RFC7637, September 2015, <https://www.rfc-editor.org/info/rfc7637>. [RFC8407] Bierman, A.,Ed., Qu, Y., Yeung, D., Chen, I.,"Guidelines for Authors andJ. Zhang, "YANGReviewers of Documents Containing YANG DataModel for Key Chains",Models", BCP 216, RFC8177,8407, DOI10.17487/RFC8177, June 2017, <https://www.rfc-editor.org/info/rfc8177>. [RFC8279] Wijnands, IJ., Ed., Rosen,10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>. [RFC8639] Voit, E.,Ed., Dolganow,Clemm, A.,Przygienda, T., and S. Aldrin, "Multicast Using Bit Index Explicit Replication (BIER)", RFC 8279, DOI 10.17487/RFC8279, November 2017, <https://www.rfc-editor.org/info/rfc8279>. [RFC8294] Liu, X., Qu, Y., Lindem,Gonzalez Prieto, A.,Hopps, C.,Nilsen-Nygaard, E., andL. Berger, "CommonA. Tripathy, "Subscription to YANGData Types for the Routing Area",Notifications", RFC8294,8639, DOI10.17487/RFC8294, December 2017, <https://www.rfc-editor.org/info/rfc8294>. [RFC8349] Lhotka, L., Lindem, A.,10.17487/RFC8639, September 2019, <https://www.rfc-editor.org/info/rfc8639>. [RFC8641] Clemm, A. andY. Qu, "AE. Voit, "Subscription to YANGData ModelNotifications forRouting Management (NMDA Version)",Datastore Updates", RFC8349,8641, DOI10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.10.17487/RFC8641, September 2019, <https://www.rfc-editor.org/info/rfc8641>. Appendix A. Data Tree Example This section contains an example of an instance data tree in JSON encoding [RFC7951], containing configuration data. The configuration example: { "ietf-multicast-model:multicast-model":{ "multicast-keys":[ { "vpn-rd":"0:65532:4294967292", "source-address":"*", "group-address":"234.232.203.84", "vni-type":"nvgre", "vni-value":0, "multicast-overlay":{ "ingress-egress":{ "ingress-node":"146.150.100.0", "egress-nodes":[ { "egress-node":"110.141.168.0" } ] }, }, "multicast-transport":{ "bier":{ "sub-domain":0, "bitstringlength":256, "set-identifier":0 } }, "multicast-underlay":{ "ospf":{ "topology":"2" } } } ] } } Authors' Addresses Zheng Zhang ZTE Corporation China Email: zzhang_ietf@hotmail.com Cui(Linda) WangZTE Corporation ChinaIndividual Australia Email: lindawangjoy@gmail.com Ying Cheng China Unicom Beijing China Email: chengying10@chinaunicom.cn Xufeng Liu Volta Networks Email: xufeng.liu.ietf@gmail.com Mahesh Sivakumar Juniper networks 1133 Innovation Way Sunnyvale, CALIFORNIA 94089 USA Email: sivakumar.mahesh@gmail.com