MBONED WG                                                   Zheng.                                                       Z. Zhang
Internet-Draft                                                 Cui. Wang                                           ZTE Corporation
Intended status: Standards Track                         ZTE Corporation                                 C. Wang
Expires: March 15, September 8, 2020                                      Ying.                                    Individual
                                                                Y. Cheng
                                                            China Unicom
                                                             Xufeng.
                                                                  X. Liu
                                                          Volta Networks
                                                       Mahesh.
                                                            M. Sivakumar
                                                        Juniper networks
                                                      September 12, 2019
                                                           March 7, 2020

                       Multicast YANG Data Model
               draft-ietf-mboned-multicast-yang-model-02
               draft-ietf-mboned-multicast-yang-model-03

Abstract

   This document intents to provide provides a general and all-round multicast YANG data model, which tries to stand at a high level to take
   takes full advantages of existed multicast protocol models to control
   the multicast network, and guides the deployment of multicast
   service.
   And also, there will define several possible RPCs about how to
   interact between multicast YANG data model and multicast protocol
   models.  This multicast YANG data model is mainly used by the
   management tools run by the network operators in order to manage,
   monitor and debug the network resources used to deliver multicast
   service, as well as gathering some data from the network.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 15, September 8, 2020.

Copyright Notice

   Copyright (c) 2019 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
     1.2.  Conventions Used in This Document . . . . . . . . . . . .   4
     1.3.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   4
     1.4.  Prefixes in Data Node Names . . . . . . . . . . . . . . .   4
     1.5.  Usage of Multicast Model  . . . . . . . . . . . . . . . .   4
   2.  Design of the multicast model . . . . . . . . . . . . . . . .   4
   3.  UML Class like Diagram for Multicast YANG data   6
     2.1.  Scope of Model  . . . .   4
   4.  Model Structure . . . . . . . . . . . . . . . . .   6
     2.2.  Specification . . . . . .   5
   5.  Multicast YANG data Model . . . . . . . . . . . . . . . .   7
   3.  Module Structure  . .   7
   6.  Notifications . . . . . . . . . . . . . . . . . . . .   7
     3.1.  UML like Class Diagram for Multicast YANG data Model  . .   7
     3.2.  Model Structure . .  20
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . .   9
     3.3.  Multicast YANG data model Configuration . . .  20
   8.  Normative References . . . . . .  12
     3.4.  Multicast YANG data model State . . . . . . . . . . . . .  12
     3.5.  Multicast YANG data model Notification  .  20
   Authors' Addresses . . . . . . . .  12
   4.  Multicast YANG data Model . . . . . . . . . . . . . . .  22

1.  Introduction

   Currently, there are many multicast protocol YANG models, . . .  13
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  26
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  27
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  28
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  28
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  28
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  31
   Appendix A.  Data Tree Example  . . . . . . . . . . . . . . . . .  33
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  34

1.  Introduction

   Currently, there are many multicast protocol YANG models, such as
   PIM, MLD, and BIER and so on.  But all these models are distributed
   in different working groups as separate files and focus on the
   protocol itself.  Furthermore, they cannot describe a high-level
   multicast service required by network operators.

   This document intents to provide provides a general and all-round multicast model, which tries to stand
   stands at a high level to take full advantages of these
   aforementioned models to control the multicast network, and
   guides guide the
   deployment of multicast service.

   This model is designed to be used along with other multicast YANG
   models such as PIM [I-D.ietf-pim-yang], which are not covered in this
   document.

1.1.  Terminology

   The terminology for describing YANG data model models is mainly found in [RFC6020]
   and [RFC7950], including:

   o  augment

   o  data model

   o  data node

   o  identity

   o  module

   The following abbreviations are used by the management tools
   run by the network operators in order to manage, monitor this document and debug the network resources used to deliver multicast service, as well as
   gathering some data defined
   model:

   BIER: Bit Index Explicit Replication [RFC8279].

   MLD: Multicast Listener Discovery [I-D.ietf-bier-mld].

   PIM: Protocol Independent Multicast [RFC7761].

   BGP: Border Gateway Protocol [RFC4271].

   MVPN: Multicast in MPLS/BGP IP VPNs [RFC6513].

   MLDP: Label Distribution Protocol Extensions for Point-to-Multipoint
   and Multipoint-to-Multipoint Label Switched Paths [RFC6388].

   OSPF: Open Shortest Path First [RFC2328].

   ISIS: Intermediate System to Intermediate System Routeing Exchange
   Protocol [RFC1195].

   BABEL: [I-D.ietf-babel-rfc6126bis].

   P2MP-TE: Point-to-Multipoint Traffic Engineering [RFC4875].

   BIER-TE: Traffic Engineering for Bit Index Explicit Replication
   [I-D.ietf-bier-te-arch].

1.2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.3.  Tree Diagrams

   Tree diagrams used in this document follow the notation defined in
   [RFC8340].

1.4.  Prefixes in Data Node Names

   In this document, names of data nodes, actions, and other data model
   objects are often used without a prefix, as long as it is clear from
   the network. context in which YANG module each name is defined.  Otherwise,
   names are prefixed using the standard prefix associated with the
   corresponding YANG module, as shown in Table 1.

         +----------+--------------------+----------------------+
         | Prefix   | YANG module        | Reference            |
         +----------+--------------------+----------------------+
         | inet     | ietf-inet-types    | [RFC6991]            |
         |          |                    |                      |
         | rt-types | ietf-routing-types | [RFC8294]            |
         |          |                    |                      |
         | rt       | ietf-routing       | [RFC8349]            |
         |          |                    |                      |
         | ospf     | ietf-ospf          | [I-D.ietf-ospf-yang] |
         +----------+--------------------+----------------------+

                                  Table 1

1.5.  Usage of Multicast Model

   This multicast YANG data model is mainly used by the management tools
   run by the network operators, in order to manage, monitor and debug
   the network resources which are used to deliver multicast service.
   This model is used for gathering data from the network as well.

                  +------------------------+
                  |    Multicast Model   |
                  +------------------------+
                    |        |          |
                    |        |          |
                    |  +---------+  +----------+
                    |  | EMS/NMS |  |Controller|
                    |  +---------+  +----------+
                    |        |          |
                    |        |          |
           +------------------------------------------------+
           |               Network Element1.....N           |
           +------------------------------------------------+

                    Figure 1: Example usage Usage of Multicast Model

   Detailly, in figure 1, there is an example of usage of this multicast
   model.  Network operators can use this model in a controller who which is
   responsible to implement some specific multicast flows with specific
   protocols and invoke the corresponding protocols' model to configure
   the network elements through NETCONF/RESTCONF/CLI.  Or network
   operators can use this model to the EMS/NMS to manage the network
   elements or configure the network elements directly.  For example, a multicast
   service need to be delopy in a network, supposed that

                             +------------+
                             |            +----------------------------+
              +--------------+ Controller |                            |
              |              |            +-----------+                |
              |              +------------+           |                |
              |                                       |                |
              |     +-----------------------------+   |                |
              |     |                             |   |                |
              |     |                      +------+---+--+             |
              |     |                      |Egress router+--+ Receiver |
              |     |                      +------+------+             |
          +---+-----+----+                        |                    |
 Source +-|Ingress router|     BIER domain        |                    |
          +---------+----+                        |                    |
                    |                      +------+------+             |
                    |                      |Egress router+--+ Receiver |
                    |                      +------+----+-+             |
                    |                             |    |               |
                    +-----------------------------+    +---------------+

                             Figure 2: Example

   The network administrator can use the multicast model and associated
   models to deploy the multicast service.  For example, suppose that
   the flow for a multicast service is 239.0.0.0/8, 233.252.0.0/16, the flow should
   be transport forwarded by BIER technology.
   Then we use [RFC8279] with MPLS encapsulation [RFC8296].
   Correspoding IGP protocol which is used to build BIER transport layer
   is OSPF [RFC2328].

   In this multicast YANG data model and set model, the correspond key
   (239.0.0.0) and associated is set to 233.252.0.0/16, the
   transport technology with BIER, send the is set to BIER.  The BIER underlay protocol is
   set to OSPF.  The model from controller is sent to every egde node router from the
   controller.  If the BIER transport layer which depends on OSPF has
   not been built in the network.  Then there network, the multicast YANG model will invoke
   the BIER YANG model which is an interaction among all defined in [I-D.ietf-bier-bier-yang]
   generation in the nodes to exchange controller.  After the BIER transport layer is
   built, the multicast flow
   information.  The ingress node will encapsulate router encapsulates the multicast flow with BIER
   header and send sends it into the network.  Intermediate nodes
   will routers forward
   the flows to all the egress nodes by BIER forwarding.

   On the other hand, when the network elements detect failure or some
   other changes, the network devices can send the affected multicast
   flows and the associated overlay/ transport/ underlay information to
   the controller.  Then the controller/ EMS/NMS can response
   immediately due to the failure and distribute new model for the flows
   to the network nodes quickly.  Such as the changing of the failure
   overlay protocol to another one, as well as transport and underlay
   protocol.

   Specifically, in section 3, it provides a human readability of the
   whole multicast network through UML like class diagram, which frames
   different multicast components and correlates them in a readable
   fashion.  Then, based on this UML like class diagram, there is
   instantiated and detailed YANG model in Section 5.

   In other words, this document does not define any specific protocol
   model, instead, it depends on many existed multicast protocol models
   and relates several multicast information together to fulfill
   multicast service.

2.  Design of the multicast model

2.1.  Scope of Model

   This model includes multicast service keys and three layers: the
   multicast overlay, the transport layer can be used to configure and the multicast underlay
   information. manage Multicast keys include the features of multicast flow,
   such as(vpnid, multicast source and multicast group) information.  In service.
   The operational state data center network, for fine-grained can be retrieved by this model.  The
   subscription and push mechanism defined in [RFC8639] and [RFC8641]
   can be implemented by the user to gather subscribe to notifications on the
   data nodes belonging in this model.

   The model contains all the basic configuration parameters to operate
   the same virtual network, there model.  Depending on the implementation choices, some systems may need VNI-related information
   not allow some of the advanced parameters to assist.

   Multicast overlay defines (ingress-node, egress-nodes) be configurable.  The
   occasionally implemented parameters are modeled as optional features
   in this model.  This model can be extended, and it has been
   structured in a way that such extensions can be conveniently made.

2.2.  Specification

   The configuration data nodes
   information.  If the transport layer cover configurations.  The container
   "multicast-model" is BIER, there may define BIER
   information including (Subdomain, ingress-node BFR-id, egress-nodes
   BFR-id).  If no (ingress-node, egress-nodes) information are defined
   directly, there may need overlay multicast signaling technology, such
   as MLD or MVPN, to collect these nodes information.

   Multicast transport layer defines the type top level container in this data model.  The
   presence of transport technologies
   that can be used this container is expected to forward multicast flow, including BIER forwarding
   type, MPLS forwarding type, or PIM forwarding type and so on.  One or
   several transport technologies could be defined at enable Multicast service
   functionality.  The notification includes the same time.  As
   for error reason and the detailed parameters for each transport technology, this
   multicast YANG
   associated data nodes.

3.  Module Structure

   This model can invoke imports and augments the corresponding protocol ietf-routing YANG model
   to define them.

   Multicast underlay defines the type of underlay technologies, such as
   OSPF, ISIS, BGP, PIM or BABEL defined
   in [RFC8349].  Both configuration data nodes and so on.  One or several underlay
   technologies could be state data nodes of
   [RFC8349] are augmented.

   The YANG data model defined at in this document conforms to the same time if there Network
   Management Datastore Architecture (NMDA) [RFC8342].  The operational
   state data is protective
   requirement.  As for combined with the specific parameters for each underlay
   technology, this multicast YANG associated configuration data model can depend in the
   corresponding protocol model to configure them as well.

3.
   same hierarchy [RFC8407].

3.1.  UML Class like Class Diagram for Multicast YANG data Model

   The following is a UML like diagram for Multicast YANG data Model.

                                             +-------------------+

                  +-----------+
            +-----+Multi|keys |  Multicast  Model
            |
                                             +-------------------+     +-----------+
            |     |Group Addr |
            |     +-----------+
            |   |Contain
     +-----------------------------------------+     |Source Addr|    +--------+-----------------+
            |     +-----------+    |        |                 |                         +----------------- -+
            |   +---------------------------+     |VPN Info   |    |        |          +------+-------+
            |     +-----------+         +-------------------+           +----------------------+         +--------------------+
|Multi-keys    |  +-----+------+   | Multicast Overlay Ing/Eg Nodes |
            | Multicast Transport     |VNI Info   |    | Multicast Underlay  |Overlay Tech|   +--------------+
            |     +-----------+         +-------------------+           +----------------------+         +--------------------+
|Group Addr    |  +------------+   |Ingress Nodes |   |Contain
            |                      |  |     MLD    |   +--------------+
            | invoke                      |  +------------+   |Egress Nodes  |
            |            Contain   |  | invoke
+-----------+       +--------+   +-------+              +----+     MVPN   |   +-------+------+
            |     +-----------+    | +----+            +----+  +------------+           | relate
            |     | Multicast +----+
|Source Addr|       |                    |              |      |  |     BGP    |          \|/
            +-----+  Overlay  |       +------------+  +----------------+
            |     |           |       |MLD|Snooping|  | BIER Nodes Info|
            |     +-----------+       +------------+     +--------------+    +-----+  +----------------+
            |                                         | BFR|ID         |   +------+     +------+
            |                                         +----------------+
            |
   +--------+--+           +---------------+----------+----------+
   |   +------+
|VPN Info Multicast |Contain    | |Overlay Tech|               | Ing/Eg Nodes          |          | PIM
   |  Model    |           |            +--+---+  +---+----+  +--+---+
   +--------+--+           |            | MPLS |  |BIER|TE | OSPF  | BIER |
            |    +---------+--+         +------+  +--------+  +------+
            |    | PIM Multicast  |
+-----------+ +------------+     +--------------+    +-----+
            +----+ Transport  | invoke  +-----+   +----------+
            |    |   +------+     +------+            |         | PIM |   +------+
|VNI Info   |Cisco Mode|
            |    +---------+--+         +--+--+   +----+-----+
            |     MLD              |     |Ingress Nodes               |         +----+           | +-----+               +----+
            | +-----+
+-----------+ +------------+     +--------------+              |               |           |
            |              +---------------+-----------+
            |
            |               +--------------+---------+---------+
            |     MVPN               |     |Egress Nodes              |   +----------+         |  +--------+        +-----+         |    +------+
              +------------+     +--------------+   |Cisco Mode|
            |  |BIER-TE               |        |BABEL|           +--+---+  +--+---+  +--+--+
            |    +----------+--         | BGP OSPF |  |     BGP PIM  |  |BABEL|
            | relate   +----------+    |  +--------+        +-----+ Multicast  |         +------+
              +------------+            \|/                      +----+  +------+  +-----+
            +----+
              |MLD-Snooping|    +----------------+ Underlay   | invoke
                 |
              +------------+            | BIER Nodes Info|         +------+  +------+
                                +----------------+
                 +----------+--         | BIER ISIS |  | ISIS BGP  |
                            | BFR-ID           +--+---+  +--+---+
                            |                 +------+            +------+
                                +----------------+              |         |
                            +--------------+---------+

      Figure 2: 3: UML like Class Diagram for Multicast YANG data Model

4.

3.2.  Model Structure

 module: ietf-multicast-model
   +--rw multicast-model
      +--rw multicast-keys* [vpn-rd source-address group-address
                             vni-type vni-value]
         +--rw vpn-rd                 rt-types:route-distinguisher
         +--rw source-address         ip-multicast-source-address
         +--rw group-address
                 rt-types:ip-multicast-group-address
         +--rw vni-type               virtual-type
         +--rw vni-value              uint32
         +--rw multicast-overlay
         |  +--rw ingress-egress
         |  |  +--rw ingress-node?   inet:ip-address
         |  |  +--rw egress-nodes* [egress-node]
         |  |     +--rw egress-node    inet:ip-address
         |  +--rw bier-ids
         |  |  +--rw sub-domain?     uint16
         |  |  +--rw ingress-node?   uint16
         |  |  +--rw egress-nodes* [egress-node]
         |  |     +--rw egress-node    uint16
         |  +--rw overlay-tech-type?   enumeration
          +--rw multicast-transport (overlay-tech-type)?
         |  +--rw bier     +--:(bgp)
         |     +--:(evpn)
         |  +--rw sub-domain?        uint16     +--:(mld)
         |     |  +--rw (encap-type)? mld-instance-group?
                          rt-types:ip-multicast-group-address
         |     +--:(mld-snooping)
         |     +--:(mvpn)
         |  +--:(mpls)     +--:(pim)
         +--rw multicast-transport
         |  +--rw (transport)?
         |     +--:(bier)
         |  +--:(eth)     |  +--rw bier
         |     |  +--:(ipv6)     +--rw sub-domain?        uint16
         |     |     +--rw bitstringlength?   uint16
         |     |     +--rw set-identifier?    uint16
         |     |     +--rw ecmp?              boolean (encap-type)?
         |     |  +--rw frr?               boolean        +--:(mpls)
         |     |        +--:(eth)
         |     |        +--:(ipv6)
         |     +--:(bier-te)
         |     |  +--rw bier-te
         |     |     +--rw sub-domain?        uint16
         |     |     +--rw bitstringlength?   uint16
         |     |     +--rw set-identifier?    uint16
         |     |     +--rw (encap-type)?
         |     |     |  +--:(mpls)
         |     |     |  +--:(non-mpls)
          |  +--:(eth)
         |  +--rw bitstringlength?   uint16     |     |  +--rw set-identifier?    uint16  +--:(ipv6)
         |     |     +--rw ecmp?              boolean bier-te-adj*       uint16
         |     +--:(cisco-mode)
         |  +--rw frr?               boolean     |  +--rw cisco-mode
         |     |     +--rw p-group?
                             rt-types:ip-multicast-group-address
         |     +--:(mpls)
         |  +--rw graceful-restart?   boolean
          |  |  +--rw bfd?                boolean     |  +--rw mpls
         |     |     +--rw (mpls-tunnel-type)?
         |     |        +--:(mldp)
         |     |        |  +--rw mldp-tunnel-id?       uint32
         |     |        |  +--rw mldp-frr?             boolean
          |  |     |  +--rw mldp-backup-tunnel?   boolean
         |     |        +--:(p2mp-te)
         |     |           +--rw te-tunnel-id?         uint32
         |     |           +--rw te-frr?               boolean
          |  |        +--rw te-backup-tunnel?     boolean
         |  +--rw pim
          |     +--rw graceful-restart?   boolean     +--:(pim)
         |        +--rw bfd?                boolean pim
         +--rw multicast-underlay
            +--rw underlay-requirement?   boolean
             +--rw bgp
             +--rw ospf (underlay)?
               +--:(bgp)
               +--:(ospf)
               |  +--rw topology-id?   uint8
             +--rw isis ospf
               |     +--rw topology-id?   uint16
             +--rw babel topology?
                           -> /rt:routing/control-plane-protocols
                              /control-plane-protocol/ospf:ospf
                              /topologies/topology/name
               +--:(isis)
               +--:(babel)

   notifications:
     +---n head-end-event
        +--ro event-type?                 enumeration
        +--ro multicast-key
        |  +--ro vpn-rd?           rt-types:route-distinguisher
        |  +--ro source-address?   ip-multicast-source-address
        |  +--ro group-address?    rt-types:ip-multicast-group-address
        |  +--ro vni-type?         virtual-type
        |  +--ro vni-value?        uint32
        +--ro overlay-tech-type?   enumeration (overlay-tech-type)?
        |  +--:(bgp)
        |  +--:(evpn)
        |  +--:(mld)
        |  |  +--ro transport-tech?      enumeration mld-instance-group?
                      rt-types:ip-multicast-group-address
        |  +--:(mld-snooping)
        |  +--:(mvpn)
        |  +--:(pim)
        +--ro underlay-tech?       enumeration

5.  Multicast YANG data Model

<CODE BEGINS> file "ietf-multicast-model.yang"
   module ietf-multicast-model {

    yang-version 1.1;

    namespace "urn:ietf:params:xml:ns:yang:ietf-multicast-model";
    prefix multicast-model;

    import ietf-inet-types {
        prefix "inet";
        reference "RFC6991";
    }

    import ietf-routing-types {
        prefix rt-types;
        reference "RFC8294";
    }

    organization " IETF MBONED( MBONE Deployment ) Working Group";
    contact
        "WG List:  <mailto:mboned@ietf.org>

         Editor:   Zheng Zhang
                   <mailto:zzhang_ietf@hotmail.com>
         Editor:   Cui Wang
                   <mailto:lindawangjoy@gmail.com>
         Editor:   Ying Cheng
                   <mailto:chengying10@chinaunicom.cn>
         Editor:   Xufeng Liu
                   <mailto:xufeng.liu.ietf@gmail.com>
         Editor:   Mahesh Sivakumar
                   <mailto:sivakumar.mahesh@gmail.com>
        ";

    description
         "The module defines the transport-tech
        |  +--ro (transport)?
        |     +--:(bier)
        |     |  +--ro bier
        |     |     +--ro sub-domain?        uint16
        |     |     +--ro bitstringlength?   uint16
        |     |     +--ro set-identifier?    uint16
        |     |     +--ro (encap-type)?
        |     |        +--:(mpls)
        |     |        +--:(eth)
        |     |        +--:(ipv6)
        |     +--:(bier-te)
        |     |  +--ro bier-te
        |     |     +--ro sub-domain?        uint16
        |     |     +--ro bitstringlength?   uint16
        |     |     +--ro set-identifier?    uint16
        |     |     +--ro (encap-type)?
        |     |     |  +--:(mpls)
        |     |     |  +--:(eth)
        |     |     |  +--:(ipv6)
        |     |     +--ro bier-te-adj*       uint16
        |     +--:(cisco-mode)
        |     |  +--ro cisco-mode
        |     |     +--ro p-group?   rt-types:ip-multicast-group-address
        |     +--:(mpls)
        |     |  +--ro mpls
        |     |     +--ro (mpls-tunnel-type)?
        |     |        +--:(mldp)
        |     |        |  +--ro mldp-tunnel-id?       uint32
        |     |        |  +--ro mldp-backup-tunnel?   boolean
        |     |        +--:(p2mp-te)
        |     |           +--ro te-tunnel-id?         uint32
        |     |           +--ro te-backup-tunnel?     boolean
        |     +--:(pim)
        |        +--ro pim
        +--ro underlay-tech
           +--ro (underlay)?
              +--:(bgp)
              +--:(ospf)
              |  +--ro ospf
              |     +--ro topology?
                            -> /rt:routing/control-plane-protocols
                               /control-plane-protocol/ospf:ospf
                               /topologies/topology/name
              +--:(isis)
              +--:(babel)

3.3.  Multicast YANG definitions for data model Configuration

   This model is used with other protocol data model to provide
   multicast service.

   This model includes multicast service
          management.

          Copyright (c) 2018 IETF Trust keys and three layers: the persons
          identified as authors of
   multicast overlay, the code.  All rights reserved.

          Redistribution and use in source and binary forms, with or
          without modification, is permitted pursuant to, transport layer and subject
          to the license terms contained in, the Simplified BSD License
          set forth in Section 4.c of multicast underlay
   information.  Multicast keys include the IETF Trust's Legal Provisions
          Relating to IETF Documents
          (http://trustee.ietf.org/license-info).

          This version features of this YANG module has relationship with
          overall multicast technologies, flow,
   such as PIM(RFC7761),
          BIER(RFC8279), MVPN(RFC6513), as(vpnid, multicast source and so on; see the RFC itself
          for full legal notices.";

    revision 2018-07-30 {
        description
         "Initial revision.";
       reference
         "RFC XXXX: A YANG Data Model for multicast YANG.
          RFC 7761: Protocol Independent Multicast - Sparse Mode (PIM-SM):
                    Protocol Specification (Revised).
          RFC 8279: Multicast Using Bit Index Explicit Replication (BIER);
          RFC 6513: Multicast in MPLS/BGP IP VPNs";
    }

/*key*/

    typedef ip-multicast-source-address {
        type union {
            type rt-types:ipv4-multicast-source-address;
            type rt-types:ipv6-multicast-source-address;
        }
        description
            "This type represents a version-neutral IP multicast
             source address.  The format of the textual
             representation implies the IP version.";
        reference
            "RFC8294: Common YANG Data Types group) information.  In
   data center network, for fine-grained to gather the Routing Area.";
    }

    typedef virtual-type {
        type enumeration {
            enum "vxlan" {
                description "The vxlan type. See more detail in RFC7348.";
            }
            enum "virtual subnet" {
                description "The nvgre type. See more detail in RFC7637.";
            }
            enum "vni" {
                description
                  "The geneve type. See more detail in [ietf-nvo3-geneve].";
            }
        }
        description "The collection of nodes belonging
   to the same virtual network type.";
    }

    grouping general-multicast-key {
        description "The general multicast keys. They are used network, there may need VNI-related information
   to
                     distinguish different assist.

   Multicast overlay defines (ingress-node, egress-nodes) nodes
   information.  If the transport layer is BIER, there may define BIER
   information including (Subdomain, ingress-node BFR-id, egress-nodes
   BFR-id).  If no (ingress-node, egress-nodes) information are defined
   directly, there may need overlay multicast service.";
        leaf vpn-rd {
            type rt-types:route-distinguisher;
            description "A Route Distinguisher used signaling technology, such
   as MLD or MVPN, to distinguish
                         routes from different MVPNs (RFC 6513).";
            reference
                "RFC8294: Common YANG Data Types for collect these nodes information.

   Multicast transport layer defines the Routing Area.";
        }
        leaf source-address { type ip-multicast-source-address;
            description
                "The IPv4/IPv6 source address of multicast flow. The
                 value set to zero means transport technologies
   that the receiver interests
                 in all source that relevant can be used to one given group.";
        }
        leaf group-address { forward multicast flow, including BIER forwarding
   type, MPLS forwarding type, or PIM forwarding type rt-types:ip-multicast-group-address;
            description
                "The IPv4/IPv6 group address of and so on.  One or
   several transport technologies could be defined at the same time.  As
   for the detailed parameters for each transport technology, this
   multicast flow. This YANG data model can invoke the corresponding protocol model
   to define them.

   Multicast underlay defines the type represents a version-neutral IP of underlay technologies, such as
   OSPF, ISIS, BGP, PIM or BABEL and so on.  One or several underlay
   technologies could be defined at the same time if there is protective
   requirement.  As for the specific parameters for each underlay
   technology, this multicast group
                 address. YANG data model can depend the
   corresponding protocol model to configure them as well.

   The format configuration modeling branch is composed of the textual representation
                 implies keys, overlay
   layer, transport layer and underlay layer.

3.4.  Multicast YANG data model State

   Multicast model states are the IP version."; same with the configuration.

3.5.  Multicast YANG data model Notification

   The defined Notifications include the events of head end nodes.  Like
   head node failer, overlay/ transport/ underlay module loading/
   unloading.  And the potential failer about some multicast flows and
   associated overlay/ transport/ underlay technologies.

4.  Multicast YANG data Model

   This module references [RFC1195], [RFC2328], [RFC4271], [RFC4541],
   [RFC4875], [RFC5340], [RFC6037], [RFC6388], [RFC6513], [RFC6991],
   [RFC7348], [RFC7432], [RFC7637], [RFC7716], [RFC7761], [RFC8279],
   [RFC8294], [RFC8296], [RFC8343], [RFC8344], [RFC8349], [RFC8639],
   [RFC8641], [I-D.ietf-pim-yang], [I-D.ietf-bier-bier-yang],
   [I-D.ietf-bier-te-arch], [I-D.ietf-nvo3-geneve], [I-D.ietf-bier-mld],
   [I-D.ietf-bess-evpn-bum-procedure-updates], [I-D.ietf-bier-evpn],
   [I-D.zhang-bier-bierin6], [I-D.ietf-babel-rfc6126bis],
   [I-D.ietf-bier-pim-signaling].

  <CODE BEGINS> file "ietf-multicast-model@2020-03-06.yang"
  module ietf-multicast-model {

    yang-version 1.1;

    namespace "urn:ietf:params:xml:ns:yang:ietf-multicast-model";
    prefix multicast-model;

    import ietf-inet-types {
      prefix "inet";
      reference
                "RFC8294:
        "RFC 6991: Common YANG Data Types";
    }
    import ietf-routing-types {
      prefix "rt-types";
      reference
        "RFC 8294: Common YANG Data Types for the Routing Area."; Area";
    }
        leaf vni-type
    import ietf-routing {
            type virtual-type;
            description
                "The type of virtual network identifier. Includes the
                 Vxlan, NVGRE and Geneve. This value and vni-value is
                 used to indicate a specific virtual multicast service.";
      prefix "rt";
      reference
        "RFC 8349: A YANG Data Model for Routing Management
                   (NMDA Version)";
    }
        leaf vni-value
    import ietf-ospf {
            type uint32;
      prefix "ospf";
      reference
        "I-D.ietf-ospf-yang: YANG Data Model for OSPF Protocol";
    }

    organization " IETF MBONED (MBONE Deployment) Working Group";
    contact
      "WG List:  <mailto:mboned@ietf.org>

       Editor:   Zheng Zhang
                 <mailto:zzhang_ietf@hotmail.com>

       Editor:   Cui Wang
                 <mailto:lindawangjoy@gmail.com>
       Editor:   Ying Cheng
                 <mailto:chengying10@chinaunicom.cn>
       Editor:   Xufeng Liu
                 <mailto:xufeng.liu.ietf@gmail.com>
       Editor:   Mahesh Sivakumar
                 <mailto:sivakumar.mahesh@gmail.com>
      ";

    // RFC Ed.: replace XXXX with actual RFC number and remove
    // this note

    description
      "The value module defines the YANG definitions for multicast service
       management.

       Copyright (c) 2020 IETF Trust and the persons identified as
       authors of Vxlan network identifier, virtual subnet
                 ID or virtual net identifier. This value the code.  All rights reserved.

       Redistribution and vni-type use in source and binary forms, with or
       without modification, is used permitted pursuant to, and subject
       to indicate a specific virtual multicast service.";
        }
    }

/*overlay*/

    grouping overlay-technology {
        leaf overlay-tech-type {
            type enumeration {
                enum mld {
                    description "MLD technology is used for multicast
                        overlay. See more detail the license terms contained in, the Simplified BSD
       License set forth in [draft-ietf-bier-mld]";
                }
                enum mvpn {
                    description "MVPN technology Section 4.c of the IETF Trust's Legal
       Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is used part of RFC XXXX
       (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
       itself for multicast
                        overlay. See more detail full legal notices.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in RFC6513.";
                }
                enum bgp this document
       are to be interpreted as described in BCP 14 (RFC 2119)
       (RFC 8174) when, and only when, they appear in all
       capitals, as shown here.";

    revision 2020-03-06 {
      description "BGP technology is used
        "Initial revision.";
      reference
        "RFC XXXX: A YANG Data Model for multicast
                                 overlay. See more detail in RFC7716."; YANG.";
    }
                enum mld-snooping

    /*
     *typedef
     */

    typedef ip-multicast-source-address {
      type union {
        type rt-types:ipv4-multicast-source-address;
        type rt-types:ipv6-multicast-source-address;
      }
      description "MLD snooping technology
        "This type represents a version-neutral IP multicast
         source address.  The format of the textual
         representation implies the IP version.";
      reference
        "RFC8294: Common YANG Data Types for the Routing Area.";
    }

    typedef virtual-type {
      type enumeration {
        enum vxlan {
          description
            "The VXLAN encapsulation is used for
                                 multicast overlay. See more detail in RFC4541."; flow encapsulation.";
          reference
            "RFC 7348: Virtual eXtensible Local Area Network (VXLAN):
             A Framework for Overlaying Virtualized Layer 2 Networks
             over Layer 3 Networks.";
        }
        enum nvgre {
          description
            "The NVGRE encapsulation is used for flow encapsulation.";
          reference
            "RFC 7637: NVGRE: Network Virtualization Using Generic
             Routing Encapsulation.";
        }
        enum geneve {
          description
            "The possible overlay technologies GENEVE encapsulation is used for multicast service."; flow encapsulation.";
          reference
            "I-D.ietf-nvo3-geneve: Geneve: Generic Network
             Virtualization Encapsulation.";
        }
      }
      description
        "The possible overlay technologies encapsulation type used for multicast service."; the flow. In case the virtual
         type is set, the associated vni-value should also be defined.";
    } // virtual-type

    /*
     * Identities
     */

    identity multicast-model {
      base rt:control-plane-protocol;
      description "Identity for the Multicast model.";
    }

    grouping multicast-overlay general-multicast-key {
      description
        "The general multicast overlay information, includes ingress node
           and egress nodes' information.";

        container ingress-egress keys. They are used to distinguish
         different multicast service.";
      leaf vpn-rd {
        type rt-types:route-distinguisher;
        description "The ingress and egress nodes address collection.";
          "A Route Distinguisher used to distinguish
           routes from different MVPNs.";
        reference
          "RFC 8294: Common YANG Data Types for the Routing Area.
           RFC 6513: Multicast in MPLS/BGP IP VPNs.";
      }
      leaf ingress-node source-address {
        type inet:ip-address; ip-multicast-source-address;
        description
          "The ip IPv4/IPv6 source address of ingress node for one or more the multicast flow. Or the ingress node of MVPN and
                   BIER. In MVPN, this is The
           value set to zero means that the address of ingress
                   PE; receiver interests
           in BIER, this is the BFR-prefix of ingress
                   nodes."; all source that relevant to one given group.";
      }

            list egress-nodes
      leaf group-address {
                key "egress-node";
        type rt-types:ip-multicast-group-address;
        description
          "The egress multicast nodes IPv4/IPv6 group address of multicast flow. Or
                   the egress node This
           type represents a version-neutral IP multicast group
           address. The format of MVPN and BIER. In MVPN, this
                   is the address of egress PE; in BIER, this is textual representation
           implies the
                   BFR-prefix IP version.";
        reference
          "RFC8294: Common YANG Data Types for the Routing Area.";
      }
      leaf vni-type {
        type virtual-type;
        description
          "The type of ingress nodes."; virtual network identifier. Includes the
           Vxlan, NVGRE and Geneve. This value and vni-value is
           used to indicate a specific virtual multicast service.";
      }
      leaf egress-node vni-value {
        type inet:ip-address; uint32;
        description
          "The ip-address value of egress Vxlan network identifier, virtual subnet ID
           or virtual net identifier. This value and vni-type is used
           to indicate a specific virtual multicast nodes.
                       See more details in RFC6513."; service.";
      }

    } // general-multicast-key

    grouping encap-type {
      description
        "The encapsulation type used for flow forwarding.";
      choice encap-type {
        case mpls {
          description "The BIER forwarding depends on mpls.";
          reference
            "RFC 8296: Encapsulation for Bit Index Explicit
             Replication (BIER) in MPLS and Non-MPLS Networks.";
        }

        container bier-ids
        case eth {
          description "The BFR-ids of ingress BIER forwarding depends on ethernet.";
          reference
            "RFC 8296: Encapsulation for Bit Index Explicit
             Replication (BIER) in MPLS and egress Non-MPLS Networks.";
        }
        case ipv6 {
          description "The BIER nodes forwarding depends on IPv6.";
          reference
            "I-D.zhang-bier-bierin6: BIER in IPv6 (BIERin6)";
        }
        description "The encapsulation type in BIER.";
      }
    } // encap-type

    grouping bier-key {
      description
        "The key parameters set for
               one or more multicast flows."; BIER/BIER TE forwarding.";
      reference
        "RFC 8279: Multicast Using Bit Index Explicit Replication
         (BIER).";

      leaf sub-domain {
        type uint16;
        description
          "The sub-domain subdomain id that this the multicast flow belongs
                   to. See more details in RFC8279."; to.";
      }
      leaf ingress-node bitstringlength {
        type uint16;
        description
          "The ingress node of multicast flow. This is the
                   BFR-id of ingress nodes. See more details in RFC8279."; bitstringlength used by BIER forwarding.";
      }
            list egress-nodes {
                key "egress-node";
                description
                  "This ID information of one adjacency. See more
                   details in RFC8279.";
      leaf egress-node set-identifier {
        type uint16;
        description
          "The BFR-ids of egress set identifier used by the multicast BIER nodes.
                       See more details in RFC8279.";

                }
            } flow.";

      }
      uses overlay-technology; encap-type;
    }

/*transport*/

    grouping transport-pim {
        description
          "The requirement information of pim transportion.
           PIM protocol is defined in RFC7761.";
        leaf graceful-restart {
            type boolean;
            description
              "If the graceful restart function should be supported.";
        }
        leaf bfd {
            type boolean;
            description "If the bfd function should be supported.";
        }
    }

    grouping multicast-transport transport-tech {
      choice transport {
        description "The selected transport information of multicast service."; technology.";
        container bier {
          description
            "The transport technology is BIER. The BIER technology
             is introduced in RFC8279. The parameter is consistent
             with the definition in [ietf-bier-bier-yang].";
            leaf sub-domain {
                type uint16;
                description
                  "The subdomain id that the multicast flow belongs
                   to. See more details in RFC8279.";
            }
            choice encap-type {
                case mpls {
                    description "The BIER forwarding depends on mpls.
                                 See more details in RFC8296.";
                }
                case eth {
                    description "The YANG data model.";
          reference
            "RFC 8279: Multicast Using Bit Index Explicit
             Replication (BIER).
             I-D.ietf-bier-bier-yang: YANG Data Model for BIER forwarding depends on ethernet.
                                 See more details in RFC8296.";
             Protocol.";

          uses bier-key;
        }
                case ipv6

        container bier-te {
          description
            "The BIER forwarding depends on IPv6.";
                }
                description "The encapsulation type in BIER.";
            }
            leaf bitstringlength transport technology is BIER-TE.";
          reference
            "I-D.ietf-bier-te-arch: Traffic Engineering for Bit Index
             Explicit Replication (BIER-TE)";

          uses bier-key;

          leaf-list bier-te-adj {
            type uint16;
            description
              "The bitstringlength adjacencies ID used by BIER forwarding.
                             See more details in RFC8279."; BIER TE forwarding
               encapsulation.";
          }
            leaf set-identifier {
                type uint16;
                description "The set identifier used by the multicast flow.
                             See more details in RFC8279.";
        }
            leaf ecmp

        container cisco-mode {
                type boolean;
          description
            "The capability of ECMP. If this value transport technology is set to true,
                   ecmp mechanism should be enabled. See more details cisco-mode: Cisco MDT.";
          reference
            "RFC 6037: Cisco Systems' Solution for Multicast in RFC8279.";
            }
             BGP/MPLS IP VPNs";

          leaf frr p-group {
            type boolean; rt-types:ip-multicast-group-address;
            description
              "The capability address of fast re-route. If this value p-group. It is
                   set used to true, fast re-route mechanism should be
                   enabled. See more details in RFC8279."; encapsulate
               and forward flow according to multicast tree from
               ingress node to egress nodes.";
          }
          uses transport-pim;
        }

        container bier-te mpls {
          description
            "The transport technology is BIER-TE. BIER-TE technology
               is introduced mpls. MVPN overlay can use
             mpls tunnel technologies to build transport layer.";
          reference
            "RFC 6513: Multicast in [ietf-bier-te-arch].";
            leaf sub-domain {
                type uint16;
                description
                  "The subdomain id that the multicast flow belongs to.
                   See more details in [ietf-bier-te-arch].";
            }
            choice encap-type {
                case mpls {
                    description
                      "The BIER-TE forwarding depends on mpls. See more
                       details in [ietf-bier-te-arch].";
                }
                case non-mpls {
                    description
                      "The BIER-TE forwarding depends on non-mpls. See
                       more details in [ietf-bier-te-arch].";

                }
                description "The encapsulation type in BIER-TE.";
            }
            leaf bitstringlength {
                type uint16;
                description "The bitstringlength used by BIER-TE forwarding.
                             See more details in [ietf-bier-te-arch].";
            }
            leaf set-identifier {
                type uint16;
                description
                  "The set identifier used by the multicast flow,
                   especially in BIER TE. See more details in
                   [ietf-bier-te-arch].";
            }
            leaf ecmp {
                type boolean;
                description
                  "The capability of ECMP. If this value is set to
                   true, ecmp mechanism should be enabled.
                   See more details in [ietf-bier-te-arch].";
            }
            leaf frr {
                type boolean;
                description
                  "The capability of fast re-route. If this value
                   is set to true, fast re-route mechanism should
                   be enabled. See more details in
                   [ietf-eckert-bier-te-frr].";
            }
        }
        container cisco-mode {
            description
              "The transport technology is cisco-mode. The Cisco MDT
               multicast mechanism is defined in RFC6037.";
            leaf p-group {
                type rt-types:ip-multicast-group-address;
                description
                  "The address of p-group. It is used to encapsulate
                   and forward flow according to multicast tree from
                   ingress node to egress nodes.";
            }
            uses transport-pim;
        }
        container mpls {
            description
              "The transport technology is mpls. MVPN overlay can use
               mpls tunnel technologies to build transport layer. The
               usage is introduced in RFC6513.";
            choice mpls-tunnel-type {
                case mldp MPLS/BGP IP VPNs.";

          choice mpls-tunnel-type {
            case mldp {
              description "The mldp tunnel. The protocol detail
                                 is defined in RFC6388."; tunnel.";
              reference
                "RFC 6388: Label Distribution Protocol Extensions
                 for Point-to-Multipoint and Multipoint-to-Multipoint
                 Label Switched Paths.";

              leaf mldp-tunnel-id {
                type uint32;
                description
                  "The tunnel id that correspond this
                                     flow. The detail is defined in RFC6388.";
                    }
                    leaf mldp-frr {
                        type boolean;
                        description
                          "If the fast re-route function should be
                           supported. The detail is defined in RFC6388."; flow.";
              }
              leaf mldp-backup-tunnel {
                type boolean;
                description
                  "If the backup tunnel function should be
                           supported. The detail is defined in RFC6388.";
                   supported.";
              }
            }
            case p2mp-te {
              description
                "The p2mp te tunnel. The protocol detail is
                       defined in RFC4875."; tunnel.";
              reference
                "RFC 4875: Extensions to Resource Reservation Protocol
                 - Traffic Engineering (RSVP-TE) for Point-to-Multipoint
                 TE Label Switched Paths (LSPs).";

              leaf te-tunnel-id {
                type uint32;
                description
                  "The tunnel id that correspond this flow.
                           The detail is defined in RFC4875."; flow.";
              }
              leaf te-frr te-backup-tunnel {
                type boolean;
                description
                  "If the fast re-route backup tunnel function should be
                           supported. The detail is defined in RFC4875.";
                    }
                    leaf te-backup-tunnel {
                        type boolean;
                        description
                          "If the backup tunnel function should be
                           supported. The detail is defined in RFC4875.";
                   supported.";
              }
            }
            description "The collection types of mpls tunnels";
          }
        } // mpls

        container pim {
            uses transport-pim;
          description
            "The transport technology is PIM. PIM [RFC7761] is used
             commonly in traditional network.";
          reference
            "RFC 7761: Protocol Independent Multicast - Sparse Mode
                 (PIM-SM): Protocol Specification (Revised).";
          uses transport-pim;
        }
      }

/*underlay*/ // choice
    } // transport-tech

    grouping multicast-underlay underlay-tech {
        description
          "The underlay information relevant multicast service.
           Underlay protocols are used to build transport layer.
           It is unnecessary in traditional network that use
           PIM [RFC7761] to build multicast tree. Diversity
      choice underlay
           protocols can be choosed to build BIER transport layer.";
        leaf underlay-requirement {
            type boolean;
            description "If the underlay technology is required.";
        }
        container
        case bgp {
          description
            "The underlay technology is BGP. BGP protocol RFC4271
             should be triggered used to run if BGP is used as
             underlay protocol.";
          reference
            "RFC 4271: A Border Gateway Protocol 4 (BGP-4)";
        }
        container ospf {
          description
            "The underlay technology is OSPF. OSPF protocol RFC2328
             should be triggered to run if OSPF is used as underlay
             protocol.";
          reference
            "RFC 2328: OSPF Version 2.
             RFC 5340: OSPF for IPv6.
             I-D.ietf-ospf-yang: YANG Data Model for OSPF Protocol.";

          leaf topology-id topology {
            type uint8; leafref {
              path "/rt:routing/rt:control-plane-protocols/"
                 + "rt:control-plane-protocol/ospf:ospf/"
                 + "ospf:topologies/ospf:topology/ospf:name";
            }
            description
              "The designed topology id name of ospf instance. The topology id
                   can be assigned In some situations. More details
                   is defined in RFC2328."; protocol.";
          }
        }
        container
        case isis {
          description
            "The underlay technology is ISIS. ISIS protocol should
             be triggered to run if ISIS is used as underlay protocol.
               Details is defined in RFC1195.";
            leaf topology-id {
                type uint16;
                description
                  "The topology id of isis instance. The topology id
             And the associated extensions can be assigned In some situations.";
            } used.";
          reference
            "RFC 1195: Use of OSI IS-IS for Routing in TCP/IP and
             Dual Environments";
        }
        container
        case babel {
          description
            "The underlay technology is Babel. Babel protocol
             should be triggered to run if Babel is used as
             underlay protocol.";
          reference
            "I-D.ietf-babel-rfc6126bis: The Babel Routing Protocol.";
        }
      }

    container multicast-model // choice
    } // underlay-tech

    /*overlay*/

    grouping overlay-tech {
      choice overlay-tech-type {
        case bgp {
          description
          "The model of
            "BGP technology is used for multicast YANG data. Include keys, overlay,
           transport and underlay.";

        list multicast-keys{
            key "vpn-rd source-address group-address vni-type vni-value";
            uses general-multicast-key;

            container multicast-overlay overlay.";
          reference
            "RFC 7716: Global Table Multicast with BGP Multicast
                       VPN (BGP-MVPN) Procedures.";
        }
        case evpn {
          description
                  "The overlay information of
            "EVPN technology is used for multicast service.
                   Overlay overlay.";
          reference
            "RFC 7432: BGP MPLS-Based Ethernet VPN.
             I-D.ietf-bess-evpn-bum-procedure-updates: Updates on
               EVPN BUM Procedures.
             I-D.ietf-bier-evpn: EVPN BUM Using BIER.";
        }
        case mld {
          description
            "MLD technology is used to exchange for multicast
                   flows information. overlay.";
          reference
            "I-D.ietf-bier-mld: BIER Ingress Multicast Flow Overlay technology may not be
             using Multicast Listener Discovery Protocols.";
          leaf mld-instance-group {
            type rt-types:ip-multicast-group-address;
            description
              "The multicast address used in SDN controlled completely for multiple MLD instance
               support.";
          }
        }
        case mld-snooping {
          description
            "MLD snooping technology is used for multicast overlay.";
          reference
            "RFC 4541: Considerations for Internet Group Management
                       Protocol (IGMP) and Multicast Listener
                       Discovery (MLD) Snooping Switches.";
        }
        case mvpn {
          description
            "MVPN technology is used for multicast overlay.";
          reference
            "RFC 6513: Multicast in MPLS/BGP IP VPNs.";
        }
        case pim {
          description
            "PIM technology is used for multicast overlay.";
          reference
            "I-D.ietf-bier-pim-signaling: PIM Signaling
             Through BIER Core.";
        }
        description
          "The overlay technology used for multicast service.";
      }
      description "The overlay technology used for multicast service.";
    } // overlay-tech

    /*transport*/

    grouping transport-pim {
      description
        "The requirement information of pim transportion.";
      reference
        "RFC 7761: Protocol Independent Multicast - Sparse Mode
                   (PIM-SM): Protocol Specification (Revised).";
    } //transport-pim

    /*underlay*/
    container multicast-model {
      description
        "The model of multicast YANG data. Include keys, overlay,
         transport and underlay.";

      list multicast-keys{
        key "vpn-rd source-address group-address vni-type vni-value";
        uses general-multicast-key;

        container multicast-overlay {
          description
            "The overlay information of multicast service.
             Overlay technology is used to exchange multicast
             flows information. Overlay technology may not be
             used in SDN controlled completely situation, but
             it can be used in partial SDN controlled situation
             or non-SDN controlled situation. Different overlay
                   technology
             technologies can be choosed according to different
             deploy consideration.";
                uses multicast-overlay;
            }

          container multicast-transport ingress-egress {
            description
              "The transportion of multicast service. Transport
                   protocol is responsible for delivering multicast
                   flows from ingress and egress nodes to address collection.
               The ingress node may use the egress nodes with or
                   without specific encapsulation. Different transport
                   technology can be choosed according set
               directly to different
                   deploy consideration. Once a encapsulate the multicast flow by
               transport technology
                   is choosed, associated protocol should be triggered
                   to run.";
                uses multicast-transport;
            }
            container multicast-underlay technology.";

            leaf ingress-node {
              type inet:ip-address;
              description
                "The underlay ip address of ingress node for one or more
                 multicast service. Underlay protocol flow. Or the ingress node of MVPN and
                 BIER. In MVPN, this is used to build transport layer. Underlay protocol
                   need not be assigned in ordinary network since
                   existed underlay protocol fits well, but it can be
                   assigned the address of ingress
                 PE; in particular networks for better
                   controll. Once a underlay technology BIER, this is choosed,
                   associated protocol should be triggered to run.";
                uses multicast-underlay; the BFR-prefix of ingress
                 nodes.";
            }
            list egress-nodes {
              key "egress-node";
              description
                "The model egress multicast nodes of the multicast YANG data. Include keys,
               overlay, transport flow.
                 Or the egress node of MVPN and underlay.";
        }
    }

/*Notifications*/

    notification head-end-event { BIER. In MVPN, this
                 is the address of egress PE; in BIER, this is the
                 BFR-prefix of ingress nodes.";

              leaf event-type egress-node {
                type enumeration {
                enum down { inet:ip-address;
                description
                      "There is something wrong with head end node,
                       and head end node can't work properlay.";
                  "The ip-address set of egress multicast nodes.";

              }
                enum module-loaded
            }
          }

          container bier-ids {
            description
                      "Some new modules that
              "The BFR-ids of ingress and egress BIER nodes for
               one or more multicast flows. This overlay is used
               with BIER transport technology. The egress nodes
               set can be used by to encapsulate the multicast
                       flows finish loading.";
                }
                enum module-unloaded flow
               directly in the ingress node.";
            reference
              "RFC 8279: Multicast Using Bit Index Explicit
               Replication (BIER)";

            leaf sub-domain {
              type uint16;
              description
                      "Some new modules
                "The sub-domain that can be used by this multicast
                       flows have been unloaded.";
                } flow belongs to.";
            }
            leaf ingress-node {
              type uint16;
              description "Event type.";
                "The ingress node of multicast flow. This is the
                 BFR-id of ingress nodes.";
            }
        container multicast-key
            list egress-nodes {
            uses general-multicast-key;
              key "egress-node";
              description
                "The associated egress nodes of multicast keys that are influenced by
               head end node failer.";
        }
        uses overlay-technology; flow.";

              leaf transport-tech egress-node {
                type enumeration {
                enum bier { uint16;
                description
                      "BIER(RFC8279) technology can be used to
                       forward
                  "The BFR-ids of egress multicast flows."; BIER nodes.";
              }
                enum bier-te
            }
          }
          uses overlay-tech;
        }

        container multicast-transport {
          description
                      "BIER-TE(draft-ietf-bier-te-arch)
            "The transportion of multicast service. Transport
             protocol is responsible for delivering multicast
             flows from ingress nodes to egress nodes with or
             without specific encapsulation. Different transport
             technology can be used choosed according to forward multicast flows."; different
             deploy consideration. Once a transport technology
             is choosed, associated protocol should be triggered
             to run.";

          uses transport-tech;
        }
                enum cisco-mode
        container multicast-underlay {
          description
                      "Cisco mode(RFC6037) technology
            "The underlay of multicast service. Underlay protocol
             is used to build transport layer. Underlay protocol
             need not be assigned in ordinary network since
             existed underlay protocol fits well, but it can be used
             assigned in particular networks for better
             controll. Once a underlay technology is choosed,
             associated protocol should be triggered to forward run.";

          uses underlay-tech;
        }
        description
          "The model of multicast flows."; YANG data. Include keys,
           overlay, transport and underlay.";
      }
    }

    /*Notifications*/

    notification head-end-event {
      leaf event-type {
        type enumeration {
          enum mldp down {
            description
                      "MLDP(RFC6388) technology can be used to
                       forward multicast flows.";
              "There is something wrong with head end node,
               and head end node can't work properlay.";
          }
          enum p2mp-te module-loaded {
            description
                      "P2MP TE(RFC4875) technology
              "The new modules that can be used to
                       forward by multicast flows.";
               flows have been loaded.";
          }
          enum pim module-unloaded {
            description
                      "PIM(RFC7761) technology
              "The new modules that can be used to
                       forward by multicast flows.";
               flows have been unloaded.";
          }
        }
        description "Event type.";
      }
      container multicast-key {
        uses general-multicast-key;
        description
          "The associated multicast keys that are influenced by
           head end node failer.";
      }
      uses overlay-tech;

      container transport-tech {
        description
          "The modules can be used to forward multicast flows.";
        uses transport-tech;
      }
        leaf

      container underlay-tech {
            type enumeration {
                enum bgp {
        description "BGP protocol can be used to build
                                 multicast transport layer.";
                }
                enum ospf {
                    description "OSPF protocol can be used to build
                                 multicast transport layer.";
                }
                enum isis {
                    description "ISIS protocol can be used to build
                                 multicast transport layer.";
                }
                enum babel {
                    description "Babel protocol can be used to build
                                 multicast transport layer.";
                }
            }
            description "The modules can be
          "There is something wrong with the module which is
           used to build multicast transport layer.";
        uses underlay-tech;
      }
      description
        "Notification events for the head end nodes. Like head
         node failer, overlay/ transport/ underlay module
         loading/ unloading. And the potential failer about some
         multicast flows and associated
           overlay/ transport/ underlay technologies.";
    }
}
<CODE ENDS>

6.  Notifications

   The defined Notifications include the events of head end nodes.  Like
   head node failer, overlay/ transport/ underlay module loading/
   unloading.  And the potential failer about some multicast flows associated
         overlay/ transport/ underlay technologies.";
    }
  }
  <CODE ENDS>

5.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The NETCONF access control model [RFC8341] provides the means to
   restrict access for particular NETCONF or RESTCONF users to a
   preconfigured subset of all available NETCONF or RESTCONF protocol
   operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are data nodes and their
   sensitivity/vulnerability:

   Under /rt:routing/rt:control-plane-protocols/multicast-model,

   multicast-model

      These data nodes in this model specifies the configuration for the
      multicast service at the top level.  Modifying the configuration
      can cause multicast service to be deleted or reconstructed.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the data nodes and
   their sensitivity/vulnerability:

   /rt:routing/rt:control-plane-protocols/multicast-model,

   Unauthorized access to any data node of the above tree can disclose
   the operational state information of multicast service on this
   device.

6.  IANA Considerations

   RFC Ed.: Please replace all occurrences of 'XXXX' with the actual RFC
   number (and remove this note).

   The IANA is requested to assign one new URI from the IETF XML
   registry [RFC3688].  Authors are suggesting the following URI:

   URI: urn:ietf:params:xml:ns:yang:ietf-multicast-model

   Registrant Contact: The IESG

   XML: N/A, the requested URI is an XML namespace

   This document also requests one new YANG module name in the YANG
   Module Names registry [RFC6020] with the following suggestion:

   name: ietf-multicast-model

   namespace: urn:ietf:params:xml:ns:yang:ietf-multicast-model

   prefix: multicast-model

   reference: RFC XXXX

7.  Acknowledgements

   The authors would like to thank Stig Venaas, Jake Holland, Min Gu for
   their valuable comments and suggestions.

8.  References

8.1.  Normative References

   [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
              dual environments", RFC 1195, DOI 10.17487/RFC1195,
              December 1990, <https://www.rfc-editor.org/info/rfc1195>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
              DOI 10.17487/RFC2328, April 1998,
              <https://www.rfc-editor.org/info/rfc2328>.

   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.

   [RFC4875]  Aggarwal, R., Ed., Papadimitriou, D., Ed., and S.
              Yasukawa, Ed., "Extensions to Resource Reservation
              Protocol - Traffic Engineering (RSVP-TE) for Point-to-
              Multipoint TE Label Switched Paths (LSPs)", RFC 4875,
              DOI 10.17487/RFC4875, May 2007,
              <https://www.rfc-editor.org/info/rfc4875>.

   [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
              for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008,
              <https://www.rfc-editor.org/info/rfc5340>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6388]  Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B.
              Thomas, "Label Distribution Protocol Extensions for Point-
              to-Multipoint and Multipoint-to-Multipoint Label Switched
              Paths", RFC 6388, DOI 10.17487/RFC6388, November 2011,
              <https://www.rfc-editor.org/info/rfc6388>.

   [RFC6513]  Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
              BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
              2012, <https://www.rfc-editor.org/info/rfc6513>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7432]  Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
              Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
              Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
              2015, <https://www.rfc-editor.org/info/rfc7432>.

   [RFC7716]  Zhang, J., Giuliano, L., Rosen, E., Ed., Subramanian, K.,
              and D. Pacella, "Global Table Multicast with BGP Multicast
              VPN (BGP-MVPN) Procedures", RFC 7716,
              DOI 10.17487/RFC7716, December 2015,
              <https://www.rfc-editor.org/info/rfc7716>.

   [RFC7761]  Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
              Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
              Multicast - Sparse Mode (PIM-SM): Protocol Specification
              (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
              2016, <https://www.rfc-editor.org/info/rfc7761>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/info/rfc7951>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8279]  Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
              Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
              Explicit Replication (BIER)", RFC 8279,
              DOI 10.17487/RFC8279, November 2017,
              <https://www.rfc-editor.org/info/rfc8279>.

   [RFC8294]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
              "Common YANG Data Types for the Routing Area", RFC 8294,
              DOI 10.17487/RFC8294, December 2017,
              <https://www.rfc-editor.org/info/rfc8294>.

   [RFC8296]  Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
              Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation
              for Bit Index Explicit Replication (BIER) in MPLS and Non-
              MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, January
              2018, <https://www.rfc-editor.org/info/rfc8296>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and
   associated overlay/ transport/ underlay technologies.

7.  Acknowledgements

   The authors would like to thank Stig Venaas, Jake Holland, Min Gu R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for
   their valuable comments Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8344]  Bjorklund, M., "A YANG Data Model for IP Management",
              RFC 8344, DOI 10.17487/RFC8344, March 2018,
              <https://www.rfc-editor.org/info/rfc8344>.

   [RFC8349]  Lhotka, L., Lindem, A., and suggestions.

8.  Normative Y. Qu, "A YANG Data Model for
              Routing Management (NMDA Version)", RFC 8349,
              DOI 10.17487/RFC8349, March 2018,
              <https://www.rfc-editor.org/info/rfc8349>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

8.2.  Informative References

   [I-D.ietf-babel-rfc6126bis]
              Chroboczek, J. and D. Schinazi, "The Babel Routing
              Protocol", draft-ietf-babel-rfc6126bis-17 (work in
              progress), February 2020.

   [I-D.ietf-bess-evpn-bum-procedure-updates]
              Zhang, Z., Lin, W., Rabadan, J., Patel, K., and A.
              Sajassi, "Updates on EVPN BUM Procedures", draft-ietf-
              bess-evpn-bum-procedure-updates-08 (work in progress),
              November 2019.

   [I-D.ietf-bier-bier-yang]
              Chen, R., hu, f., Zhang, Z., dai.xianxian@zte.com.cn, d.,
              and M. Sivakumar, "YANG Data Model for BIER Protocol",
              draft-ietf-bier-bier-yang-05
              draft-ietf-bier-bier-yang-06 (work in progress), May February
              2020.

   [I-D.ietf-bier-evpn]
              Zhang, Z., Przygienda, T., Sajassi, A., and J. Rabadan,
              "EVPN BUM Using BIER", draft-ietf-bier-evpn-02 (work in
              progress), November 2019.

   [I-D.ietf-bier-mld]
              Pfister, P., Wijnands, I., Venaas, S., Wang, C., Zhang,
              Z., and M. Stenberg, "BIER Ingress Multicast Flow Overlay
              using Multicast Listener Discovery Protocols", draft-ietf-
              bier-mld-04 (work in progress), March 2020.

   [I-D.ietf-bier-pim-signaling]
              Bidgoli, H., Kotalwar, J., Xu, F., mishra, m., Zhang, Z.,
              and A. Dolganow, "PIM Signaling Through BIER Core", draft-
              ietf-bier-pim-signaling-08 (work in progress), November
              2019.

   [I-D.ietf-bier-te-arch]
              Eckert, T., Cauchie, G., and M. Menth, "Traffic "Path Engineering
              for Bit Index Explicit Replication (BIER-TE)",
              draft-ietf-bier-te-arch-03 draft-ietf-
              bier-te-arch-06 (work in progress), July February 2020.

   [I-D.ietf-nvo3-geneve]
              Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
              Network Virtualization Encapsulation", draft-ietf-
              nvo3-geneve-14 (work in progress), September 2019.

   [I-D.ietf-ospf-yang]
              Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
              "YANG Data Model for OSPF Protocol", draft-ietf-ospf-
              yang-29 (work in progress), October 2019.

   [I-D.ietf-pim-yang]
              Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
              Y., and f. hu, "A YANG Data Model for Protocol Independent
              Multicast (PIM)", draft-ietf-pim-yang-17 (work in
              progress), May 2018.

   [RFC6020]  Bjorklund, May 2018.

   [I-D.zhang-bier-bierin6]
              Zhang, Z., Przygienda, T., Wijnands, I., Bidgoli, H., and
              M. McBride, "BIER in IPv6 (BIERin6)", draft-zhang-bier-
              bierin6-04 (work in progress), January 2020.

   [RFC3688]  Mealling, M., Ed., "YANG - A Data Modeling Language "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC4541]  Christensen, M., Kimball, K., and F. Solensky,
              "Considerations for
              the Network Configuration Internet Group Management Protocol (NETCONF)",
              (IGMP) and Multicast Listener Discovery (MLD) Snooping
              Switches", RFC 6020, 4541, DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>. 10.17487/RFC4541, May 2006,
              <https://www.rfc-editor.org/info/rfc4541>.

   [RFC6037]  Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco
              Systems' Solution for Multicast in BGP/MPLS IP VPNs",
              RFC 6037, DOI 10.17487/RFC6037, October 2010,
              <https://www.rfc-editor.org/info/rfc6037>.

   [RFC6087]  Bierman, A., "Guidelines for Authors and Reviewers of YANG
              Data Model Documents", RFC 6087, DOI 10.17487/RFC6087,
              January 2011, <https://www.rfc-editor.org/info/rfc6087>.

   [RFC6241]  Enns, R., Ed., Bjorklund,

   [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
              L., Sridhar, T., Bursell, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", C. Wright, "Virtual
              eXtensible Local Area Network (VXLAN): A Framework for
              Overlaying Virtualized Layer 2 Networks over Layer 3
              Networks", RFC 6241, 7348, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6513]  Rosen, E., 10.17487/RFC7348, August 2014,
              <https://www.rfc-editor.org/info/rfc7348>.

   [RFC7637]  Garg, P., Ed. and R. Aggarwal, Y. Wang, Ed., "Multicast in MPLS/
              BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
              2012, <https://www.rfc-editor.org/info/rfc6513>.

   [RFC7223]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
              <https://www.rfc-editor.org/info/rfc7223>.

   [RFC7277]  Bjorklund, M., "A YANG Data Model for IP Management", "NVGRE: Network
              Virtualization Using Generic Routing Encapsulation",
              RFC 7277, 7637, DOI 10.17487/RFC7277, June 2014,
              <https://www.rfc-editor.org/info/rfc7277>.

   [RFC8177]  Lindem, 10.17487/RFC7637, September 2015,
              <https://www.rfc-editor.org/info/rfc7637>.

   [RFC8407]  Bierman, A., Ed., Qu, Y., Yeung, D., Chen, I., "Guidelines for Authors and J.
              Zhang, "YANG Reviewers of
              Documents Containing YANG Data Model for Key Chains", Models", BCP 216, RFC 8177, 8407,
              DOI 10.17487/RFC8177, June 2017,
              <https://www.rfc-editor.org/info/rfc8177>.

   [RFC8279]  Wijnands, IJ., Ed., Rosen, 10.17487/RFC8407, October 2018,
              <https://www.rfc-editor.org/info/rfc8407>.

   [RFC8639]  Voit, E., Ed., Dolganow, Clemm, A.,
              Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
              Explicit Replication (BIER)", RFC 8279,
              DOI 10.17487/RFC8279, November 2017,
              <https://www.rfc-editor.org/info/rfc8279>.

   [RFC8294]  Liu, X., Qu, Y., Lindem, Gonzalez Prieto, A., Hopps, C., Nilsen-Nygaard,
              E., and L. Berger,
              "Common A. Tripathy, "Subscription to YANG Data Types for the Routing Area", Notifications",
              RFC 8294, 8639, DOI 10.17487/RFC8294, December 2017,
              <https://www.rfc-editor.org/info/rfc8294>.

   [RFC8349]  Lhotka, L., Lindem, A., 10.17487/RFC8639, September 2019,
              <https://www.rfc-editor.org/info/rfc8639>.

   [RFC8641]  Clemm, A. and Y. Qu, "A E. Voit, "Subscription to YANG Data Model Notifications
              for
              Routing Management (NMDA Version)", Datastore Updates", RFC 8349, 8641, DOI 10.17487/RFC8349, March 2018,
              <https://www.rfc-editor.org/info/rfc8349>. 10.17487/RFC8641,
              September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Appendix A.  Data Tree Example

   This section contains an example of an instance data tree in JSON
   encoding [RFC7951], containing configuration data.

   The configuration example:

       {
           "ietf-multicast-model:multicast-model":{
               "multicast-keys":[
                   {
                       "vpn-rd":"0:65532:4294967292",
                       "source-address":"*",
                       "group-address":"234.232.203.84",
                       "vni-type":"nvgre",
                       "vni-value":0,
                       "multicast-overlay":{
                           "ingress-egress":{
                               "ingress-node":"146.150.100.0",
                               "egress-nodes":[
                                   {
                                       "egress-node":"110.141.168.0"
                                   }
                               ]
                           },
                       },
                       "multicast-transport":{
                           "bier":{
                               "sub-domain":0,
                               "bitstringlength":256,
                               "set-identifier":0
                           }
                       },
                       "multicast-underlay":{
                           "ospf":{
                               "topology":"2"
                           }
                       }
                   }
               ]
           }
       }

Authors' Addresses

   Zheng Zhang
   ZTE Corporation
   China

   Email: zzhang_ietf@hotmail.com
   Cui(Linda) Wang
   ZTE Corporation
   China
   Individual
   Australia

   Email: lindawangjoy@gmail.com

   Ying Cheng
   China Unicom
   Beijing
   China

   Email: chengying10@chinaunicom.cn

   Xufeng Liu
   Volta Networks

   Email: xufeng.liu.ietf@gmail.com

   Mahesh Sivakumar
   Juniper networks
   1133 Innovation Way
   Sunnyvale, CALIFORNIA 94089
   USA

   Email: sivakumar.mahesh@gmail.com