Internet Engineering Task Force                                  R. Cole
Internet-Draft                                  Johns Hopkins University                                            US Army CERDEC
Intended status: Standards Track                               J. Macker
Expires: April 29, 2010 July 20, 2011                                        B. Adamson
                                               Naval Research Laboratory
                                                              S. Harnedy
                                                     Booz Allen Hamilton
                                                        October 26, 2009
                                                        January 16, 2011

    Definition of Managed Objects for the Manet Simplified Multicast
                      Framework Relay Set Process
                      draft-ietf-manet-smf-mib-01
                      draft-ietf-manet-smf-mib-02

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it describes objects for configuring aspects of the
   Simplified Multicast Forwarding (SMF) process for Mobile Ad-Hoc
   Networks (MANETs).  The SMF-MIB also reports state information,
   performance metrics, and notifications.  In addition to
   configuration, the additional state and performance information is
   useful to operators troubleshooting multicast forwarding problems.

Status of This Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts.
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 29, 2010. July 20, 2011.

Copyright Notice

   Copyright (c) 2009 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info). document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Abstract

   This memo defines a portion  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Management Information Base (MIB)
   for use with network management protocols Trust Legal Provisions and are provided without warranty as
   described in the Internet community.
   In particular, it describes objects for configuring aspects of the Simplified Multicast Forwarding (SMF) process for Mobile Ad-Hoc
   Networks (MANETs).  The SMF-MIB also reports state information,
   performance metrics, and notifications.  In addition to
   configuration, this additional state and performance information is
   useful to operators troubleshooting multicast forwarding problems. BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  The Internet-Standard Management Framework . . . . . . . . . .  3
   3.  Conventions  . . . . . . . . . . . . . . . . . . . . . . . . .  3
   4.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
     4.1.  SMF Management Model . . . . . . . . . . . . . . . . . . .  4
     4.2.  Terms  . . . . . . . . . . . . . . . . . . . . . . . . . .  5
   5.  Structure of the MIB Module  . . . . . . . . . . . . . . . . .  6  5
     5.1.  Textual Conventions  . . . . . . . . . . . . . . . . . . .  6
     5.2.  The Capabilities Group . . . . . . . . . . . . . . . . . .  6
     5.3.  The Configuration Group  . . . . . . . . . . . . . . . . .  7
     5.4.  The State Group  . . . . . . . . . . . . . . . . . . . . .  7
     5.5.  The Performance Group  . . . . . . . . . . . . . . . . . .  7
     5.6.  The Notifications Group  . . . . . . . . . . . . . . . . .  8
   6.  Relationship to Other MIB Modules  . . . . . . . . . . . . . .  8
     6.1.  Relationship to the SNMPv2-MIB . . . . . . . . . . . . . .  8
     6.2.  MIB modules required for IMPORTS . . . . . . . . . . . . .  8
     6.3.  Relationship to the Future RSSA-MIBs . . . . . . . . . . .  9  8
   7.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . .  9
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 40 48
   9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 42 49
   10. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 42 50
   11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 43 50
   12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 43 50
     12.1. Normative References . . . . . . . . . . . . . . . . . . . 43 50
     12.2. Informative References . . . . . . . . . . . . . . . . . . 43 51
   Appendix A.  Change Log  . . . . . . . . . . . . . . . . . . . . . 44 51
   Appendix B.  Open Issues . . . . . . . . . . . . . . . . . . . . . 44 52
   Appendix C.    . . . . . . . . . . . . . . . . . . . . . . . . . . 45 53

1.  Introduction

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   In particular, it describes objects for configuring aspects of a
   process implementing Simplified Multicast Forwarding (SMF)
   [I-D.ietf-manet-smf] for Mobile Ad-Hoc Networks (MANETs).  SMF
   provides multicast Duplicate Packet Detection (DPD) and supports
   algorithms for constructing an estimate of a MANET Minimum Connected
   Dominating Set (MCDS) for efficient multicast forwarding.  The SMF-
   MIB also reports state information, performance metrics, and
   notifications.  In addition to configuration, this additional state
   and performance information is useful to operators troubleshooting
   multicast forwarding problems.

2.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  MIB objects are generally
   accessed through the Simple Network Management Protocol (SNMP).
   Objects in the MIB are defined using the mechanisms defined in the
   Structure of Management Information (SMI).  This memo specifies a MIB
   module that is compliant to the SMIv2, which is described in STD 58,
   RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
   [RFC2580].

3.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

4.  Overview

   SMF provides methods for implementing DPD-based multicast forwarding
   with the optional use of Connected Dominating Set (CDS)-based relay
   sets.  The CDS provides a complete connected coverage of the nodes
   comprising the MANET.  The MCDS is the smallest set of MANET nodes
   (comprising a connected cluster) which cover all the nodes in the
   cluster with their transmissions.  As the density of the MANET nodes
   increase, the fraction of nodes required in an MCDS decreases.  Using
   the MCDS as a multicast forwarding set then becomes an efficient
   multicast mechanism for MANETs.

   Various algorithms for the construction of estimates of the MCDS
   exist.  The Simplified Multicast Framework [I-D.ietf-manet-smf]
   describes some of these.  It further defines various operational
   modes for a node which is participating in the collective creation of
   the MCDS estimates.  These modes depend upon the set of related MANET
   routing and discovery protocols and mechanisms in operation in the
   specific MANET node.

   A SMF routers' router's MIB contains SMF process configuration parameters
   (e.g. specific CDS algorithm), state information (e.g., current
   membership in the CDS), performance counters (e.g., packet counters),
   and notifications.

4.1.  SMF Management Model

   This section describes the management model for the SMF node process.

   Figure 1 (reproduced from Figure 4 of [I-D.ietf-manet-smf]) shows the
   relationship between the SMF Relay Set selection algorithm and the
   related algorithms, processes and protocols running in the MANET
   nodes.  The Relay Set Selection Algorithm (RSSA) can rely upon
   topology information gotten from the MANET Neighborhood Discovery
   Protocol (NHDP), from the specific MANET routing protocol running on
   the node, or from Layer 2 information passed up to the higher layer
   protocol processes.

                       Possible L2 Trigger/Information
                                      |
                                      |

   RGC Note: update this figure from the latest SMF draft.

       ______________              ______|_____         __________________
   |    MANET     |                ____________
      |              |              |            |
      | Neighborhood |              | Relay Set  |
      | Other Heuristics |
   |  Discovery   |------------|   |------------->| Selection  |-------| (Preference,etc)  |
      |   Protocol   |   neighbor   | Algorithm  |       |                  |
      |______________|     info     |____________|       |__________________|
             \                               /
              \                             /
       neighbor\                           / Dynamic Relay forwarding
         info*  \      ____________      _____________      /    Set Status    status
                 \    |    SMF     |    / (State, {neighbor info})
               `---| Relay Set  |---'
                   |   State             |
                ---|____________|
               /    /
    ______________
   |  Coexistent  |
   |    MANET     |
   |   Unicast    |
                  `-->| Forwarding  |<--'
                      |   Process   |
   |______________|
    ----------------->|_____________|----------------->
     incoming packet,                   forwarded packets
     interface id*, and
     previous hop*

              Figure 1: SMF Relay Set Control Options Node Architecture

4.2.  Terms

   The following definitions apply throughout this document:

   o  Configuration Objects - switches, tables, objects which are
      initialized to default settings or set through the management
      interface defined by this MIB.

   o  Tunable Configuration Objects - objects whose values affect timing
      or attempt bounds on the SMF RS process.

   o  State Objects - automatically generated values which define the
      current operating state of the SMF RS process in the router.

   o  Performance Objects - automatically generated values which help an
      administrator or automated tool to assess the performance of the
      CDS multicast process on the router and the overall multicasting
      performance within the MANET routing domain.

5.  Structure of the MIB Module

   This section presents the structure of the SMF-MIB module.  The
   objects are arranged into the following groups:

   o  smfMIBNotifications - defines the notifications associated with
      the SMF-MIB.

   o  smfMIBObjects - defines the objects forming the basis for the SMF-
      MIB.  These objects are divided up by function into the following
      groups:

   o

      *  Capabilities Group - This group contains the SMF objects that
         the device uses to advertise its local capabilities with
         respect to, e.g., the supported RSSAs.

      *  Configuration Group - This group contains the SMF objects that
         configure specific options that determine the overall operation
         of the SMF RSSA and the resulting multicast performance.

      *  State Group - Contains information describing the current state
         of the SMF RSSA process such as the Neighbor Table.

      *  Performance Group - Contains objects which help to characterize
         the performance of the SMF RSSA process, typically statistics
         counters.

   o  smfMIBConformance - defines minimal and full conformance of
      implementations to this SMF-MIB.

5.1.  Textual Conventions

   The textual conventions defined within the SMF-MIB are as follows. follows:

   o  The SmfStatus is defined within the SMF-MIB.  This contains the
      current operational status of the SMF process on the an interface.

   o  The SmfOpModeID represents an index that identifies a specific SMF
      operational mode.

   o  The SmfRssaID represents an index that identifies identifies, through reference
      reference, a specific RSSA avaliable available for operation on the device.

5.2.  The Capabilities Group

   The SMF device supports a set of capabilities.  The list of
   capabilities which the device can advertise are:

   o  Operational Mode - topology information from NHDP, CDS-aware
      unicast routing or Cross-layer from Layer 2.

   o  SMF RSSA - the specific RSSA operational on the device.  Note that
      configuration, state and performance objects related to aspecific a specific
      RSSA must be defined within another speperate separate MIB.

5.3.  The Configuration Group

   The SMF device is configured with a set of controls.  The list  Some of the
   prominent configuration controls for the SMF device follow. follow:

   o  Operational Mode - topology information from NHDP, CDS-aware
      unicast routing or Cross-layer from Layer 2.

   o  SMF RSSA - the specific RSSA operational on the device.

   o  Duplicate Packet detection for IPv4 - Identification-based or
      Hash-based DPD.

   o  Duplicate Packet detection for IPv6 - Identification-based or
      Hash-based DPD.

   o  NHDP RSSA  SMF Type Message TLV - if NHDP mode is selected, then is the RSSA SMF
      Type Message TLV may be included in the NHDP exchanges.  [Note: Is this and
      the following two TLVs optional and are they included as a group
      or independently of one another?].

   o  NHDP RSSA  SMF Address Block TLV - if NHDP mode is selected, then is the RSSA SMF
      Address Block TLV included in the NHDP exchanges.

   o  Router Priority TLV - if NHDP mode is selected, then  (Note: is the Router
      Priority TLV included in the NHDP exchanges. this
      correct?)

5.4.  The State Group

   The State Subtree reports current state information. information, e.g.,

   o  Node RSS State - is the node currently in or out of the Relay Set.

   o  Neighbors Table - a table containing current neighbors and their
      operational RSSA.

5.5.  The Performance Group

   The Performance subtree reports primarily counters that relate to SMF
   RSSA performance.  The SMF performance counters consists of per node
   and per interface objects:

   o  Total multicast packets received.

   o  Total multicast packets forwarded.

   o  Total duplicate multicast packets detected.

   o  Per interface statistics table with the following entries:

   o
      *  Multicast packets received.

      *  Multicast packets forwarded.

      *  Duplicate multicast packets detected.

5.6.  The Notifications Group

   The Notifications Subtree contains the list of notifications
   supported within the SMF-MIB and their intended purpose or utility.
   [Note: This group is currently empty.]

6.  Relationship to Other MIB Modules

   [TODO]: The text of this section specifies the relationship of the
   MIB modules contained in this document to other standards,
   particularly to standards containing other MIB modules.  Definitions
   imported from other MIB modules and other MIB modules that SHOULD be
   implemented in conjunction with the MIB module contained within this
   document are identified in this section.

6.1.  Relationship to the SNMPv2-MIB

   The 'system' group in the SNMPv2-MIB [RFC3418] is defined as being
   mandatory for all systems, and the objects apply to the entity as a
   whole.  The 'system' group provides identification of the management
   entity and certain other system-wide data.  The SMF-MIB does not
   duplicate those objects.

6.2.  MIB modules required for IMPORTS

   The textual conventions imported for use in the SMF-MIB are as
   follows.  The MOUDULE-IDENTITY, MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
   Counter32, Unsigned32, Integer32 and mib-2 textual conventions are
   imported from RFC 2578 [RFC2578].  The TEXTUAL-CONVENTION, RowStatus
   and TruthValue textual conventions are imported from RFC 2579
   [RFC2579].  The MODULE-COMPLIANCE, OBJECT-GROUP and NOTIFICATION-
   GROUP textual conventions are imported from RFC 2580 [RFC2580].  The
   InterfaceIndexOrZero textual convention is imported from RFC 2863
   [RFC2863].  The SnmpAdminString textual convention is imported from
   RFC 3411 [RFC3411].  The InetAddress, InetAddressType and
   InetAddressPrefixLength textual conventions are imported from RFC
   4001 [RFC4001].

6.3.  Relationship to the Future RSSA-MIBs

   In a sense, the SMF-MIB is a general front-end to a set of, yet to be
   developed, RSSA-specific MIBs.  These RSSA-specific MIBs will define
   the objects for the configuration, state, performance and
   notification objects required for the operation of these specific
   RSSAs.  The SMF-MIB Capabilities Group allows the remote management
   station the ability to query the router to discover the set of
   supported RSSAs.

7.  Definitions

   MANET-SMF-MIB DEFINITIONS ::= BEGIN

   IMPORTS

      MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
      Counter32, Unsigned32, Integer32, TimeTicks, mib-2
         FROM SNMPv2-SMI                          -- [RFC2578]

      TEXTUAL-CONVENTION, RowStatus, TruthValue
         FROM SNMPv2-TC                           -- [RFC2579]

      MODULE-COMPLIANCE, OBJECT-GROUP,
      NOTIFICATION-GROUP
         FROM SNMPv2-CONF                         -- [RFC2580]

      InterfaceIndexOrZero
         FROM IF-MIB                              -- [RFC2863]

      SnmpAdminString
         FROM SNMP-FRAMEWORK-MIB                  -- [RFC3411]

      InetAddress, InetAddressType,
      InetAddressPrefixLength
         FROM INET-ADDRESS-MIB                    -- [RFC4001]
      ;

   manetSmfMIB MODULE-IDENTITY
      LAST-UPDATED "200910261300Z" "201101161300Z"  -- October 26, 2009 January 16, 2011
      ORGANIZATION "IETF MANET Working Group"
      CONTACT-INFO
         "WG E-Mail: manet@ietf.org

          WG Chairs: ian.chakeres@gmail.com
                     jmacker@nrl.navy.mil

          Editors:   Robert G. Cole
                     Johns Hopkins University
                     Applied Physics Lab and
                     Department of Computer Science
                     11000 Johns
                     US Army CERDEC
                     Space and Terrestrial Communications
                     328 Hopkins Road
                     Bldg 245, Room 02-257
                     Laurel, 16
                     Aberdeen Proving Ground, MD 22014 21005
                     USA
                     +1 443 778-6951
                     robert.cole@jhuapl.edu 410 278-6779
                     robert.g.cole@us.army.mil
                     http://www.cs.jhu.edu/~rgcole/

                     Joseph Macker
                     Naval Research Laboratory
                     Washington, D.C. 20375
                     USA
                     macker@itd.nrl.navy.mil

                     Brian Adamson
                     Naval Research Laboratory
                     Washington, D.C. 20375
                     USA
                     adamson@itd.nrl.navy.mil

                     Sean Harnedy
                     Booz Allen Hamilton
                     333 City Boulevard West
                     Orange, CA 92868
                     USA
                     +1 714 938-3898
                     harnedy_sean@bah.com"

      DESCRIPTION
         "This MIB module contains managed object definitions for
          the Manet SMF RSSA process defined in:

          [SMF] Macker, J.(ed.),
          Simplified Multicast Forwarding draft-ietf-manet-smf-09,
          July 13, 2009. draft-ietf-manet-smf-10,
          March 06, 2010.

          Copyright (C) The IETF Trust (2008). This version
          of this MIB module is part of RFC xxxx; see the RFC
          itself for full legal notices."

        -- Revision History
        REVISION    "201101161300Z"   -- January 16, 2011
        DESCRIPTION
           "Updated 5th revision of the
            draft of this MIB module published as
            draft-ietf-manet-smf-mib-02.txt. The changes
            made in this revision include:
              - Added the Notification Group and cleaned
                up the Conformance section
              - Completed the TEXTUAL CONVENTION for the
                smfOpMode.
              - Completed the Description clauses of
                several objects within the MIB.
              - Removed the routerPriority object.
              - Added the definition of a smfRouterID
                object and associated smfRouterIDAddrType
                object.
            "
        REVISION    "200910261300Z"   -- October 26, 2009
        DESCRIPTION
           "Updated draft of this MIB module published as
            draft-ietf-manet-smf-mib-01.txt. A few changes
            were made in the development of this draft.
            Specifically, the following changes were made:
               - Updated the textual material, included
                 section on IMPORTS, relationship to other
                 MIBs, etc.
           "
        REVISION    "200904211300Z"   -- April 21, 2009
        DESCRIPTION
           "Updated draft of this MIB module published as
            draft-ietf-manet-smf-mib-00.txt. A few changes
            were made in the development of this draft.
            Specifically, the following changes were made:
               - Removed the smfGatewayFilterTable from this
                 draft.  It is a useful construct, e.g.,
                 an IPTABLES-MIB, but might best be handled
                 as a seperate MIB and worked within a
                 security focused working group.
               - Removed the smfReportsGroup. This capability
                 is being replaced with a new and more general
                 method for offline reporting.  This is being
                 worked as a new MIB module refered to as the
                 REPORT-MIB.
               - Rev'd as a new MANET WG document.
           "
        REVISION    "200902271300Z"   -- February 27, 2009
        DESCRIPTION
           "Updated draft of this MIB module published as
            draft-cole-manet-smf-mib-02.txt. Fairly extensive
            revisions and additions to this MIB were made
            in this version. Specifically, the following
            changes were made in development of this version:
               - added a Capabilities Group within the Objects
                 Group to allow the device to report supported
                 capabilities, e.g., RSSAs supported.

               - added administrative status objects for device
                 and interfaces
               - added multicast address forwarding tables, both
                 for configured (within Configuration Group) and
                 discovered (within the State Group).
               - added additional Performance counters related
                 to DPD functions.
               - Split up the performance counters into IPv4
                 and IPv6, for both global and per interface
                 statistics.
               - Split out the reports capability into a seperate
                 Reports Group under the Objects Group.
           "
        REVISION    "200811031300Z"   -- November 03, 2008
        DESCRIPTION
           "Updated draft of this MIB module published as
            draft-cole-manet-smf-mib-01.txt. Added gateway filter
            table and reports capabilities following rmon."
        REVISION    "200807071200Z"   -- July 07, 2008
        DESCRIPTION
           "Initial draft of this MIB module published as
            draft-cole-manet-smf-mib-00.txt."
        -- RFC-Editor assigns XXXX
        ::= { mib-2 998 }   -- to be assigned by IANA

   --
   -- TEXTUAL CONVENTIONs
   --

   SmfStatus ::= TEXTUAL-CONVENTION
       STATUS       current
       DESCRIPTION
          "An indication of the operability of a SMF
          function or feature.  For example, the status
          of an interface: 'enabled' indicates that
          it is performing SMF functions,
          and 'disabled' indicates that it is not."
       SYNTAX  INTEGER {
                        enabled (1),
                        disabled (2)
               }

   SmfOpModeID ::= TEXTUAL-CONVENTION
       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
           "An index that identifies through reference to a specific
            SMF operations mode ... mode.  There are basically three styles
            of SMF operation with reduced relay sets:

              Independent operation - SMF performs its own relay
                  set selection using information from an associated
                  MANET NHDP process.

              CDS-aware unicast routing operation - a coexistent
                  unicast routing protocol provides dynamic relay
                  set state based upon its own control plane
                  CDS or neighborhood discovery information.

              Cross-layer operation -  SMF operates using
                  neighborhood status and triggers from a
                  cross-layer information base for dynamic relay
                  set selection and maintenance
           "
       SYNTAX      Unsigned32 (1..2147483647)  INTEGER {
                        independent (1),
                        routing (2),
                        crossLayer (3)
                        -- future (4-255)
               }

   SmfRssaID ::= TEXTUAL-CONVENTION
       STATUS       current
       DESCRIPTION
           "An index that identifies through reference to a specific
            RSSA algorithms ... algorithms.  Several are currently defined
            in the appendix of
           "
       SYNTAX      INTEGER {
                           cF(1),
                           sMPR(2),
                           eCDS(3),
                           mprCDS(4)
                           -- future(5-127)
                           -- noStdAction(128-239)
                           -- experimental(240-255)
                   }

   --
   -- Top-Level Object Identifier Assignments
   --

   smfMIBNotifications OBJECT IDENTIFIER ::= { manetSmfMIB 0 }
   smfMIBObjects       OBJECT IDENTIFIER ::= { manetSmfMIB 1 }
   smfMIBConformance   OBJECT IDENTIFIER ::= { manetSmfMIB 2 }

   --
   -- smfMIBObjects Assignments:
   --      smfCapabilitiesGroup  - 1
   --      smfConfigurationGroup - 2
   --      smfStateGroup         - 3
   --      smfPerformanceGroup   - 4
   --

   --
   -- smfCapabilitiesGroup
   --
   --    This group contains the SMF objects that identify specific
   --    capabilities within this device related to SMF functions.
   --

   smfCapabilitiesGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 1 }

  --
   -- SMF Operational Mode Capabilities Table
   --

   smfOpModeCapabilitiesTable OBJECT-TYPE
       SYNTAX      SEQUENCE OF SmfOpModeCapabilitiesEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "The smfOpModeCapabilitiesTable contains ... identifies the
            resident set of SMF Operational Modes on this
            router.
           "
       ::= { smfCapabilitiesGroup 1 }

   smfOpModeCapabilitiesEntry OBJECT-TYPE
       SYNTAX      SmfOpModeCapabilitiesEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "Information about a particular operational
            mode.
           "
       INDEX   { smfOpModeCapabilitiesID }
       ::= { smfOpModeCapabilitiesTable 1 }

   SmfOpModeCapabilitiesEntry ::= SEQUENCE {
         smfOpModeCapabilitiesID              SmfOpModeID,
         smfOpModeCapabilitiesName            SnmpAdminString,
         smfOpModeCapabilitiesReference       SnmpAdminString
   }

   smfOpModeCapabilitiesID     OBJECT-TYPE
       SYNTAX      SmfOpModeID
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "The index for this entry.  This object identifies
            the particular operational mode for this device.
           "
       ::= { smfOpModeCapabilitiesEntry 1 }

   smfOpModeCapabilitiesName OBJECT-TYPE
       SYNTAX      SnmpAdminString
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
           "The textual name of this operational
            mode.  Current operational modes include:
            Independent Mode, CDS-aware Routing Mode,
            and Cross-layer Mode.  Others may be defined
            in future revisions of [SMF].
           "
       ::= { smfOpModeCapabilitiesEntry 2 }

   smfOpModeCapabilitiesReference OBJECT-TYPE
       SYNTAX      SnmpAdminString
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
           "This object contains a reference to the document that
            defines this operational mode.
           "
       ::= { smfOpModeCapabilitiesEntry 3 }

   --
   -- SMF RSSA Capabilities Table
   --

   smfRssaCapabilitiesTable OBJECT-TYPE
       SYNTAX      SEQUENCE OF SmfRssaCapabilitiesEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "The smfRssaCapabilitiesTable contains
            reference to the specific set of RSSAs
            currently supported on this device.
           "
       ::= { smfCapabilitiesGroup 2 }

   smfRssaCapabilitiesEntry OBJECT-TYPE
       SYNTAX      SmfRssaCapabilitiesEntry
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "Information about a particular RSSA
            algorithm."
       INDEX   { smfRssaCapabilitiesID }
       ::= { smfRssaCapabilitiesTable 1 }

   SmfRssaCapabilitiesEntry ::= SEQUENCE {
         smfRssaCapabilitiesID              SmfRssaID,
         smfRssaCapabilitiesName            SnmpAdminString,
         smfRssaCapabilitiesReference       SnmpAdminString
   }

   smfRssaCapabilitiesID     OBJECT-TYPE
       SYNTAX      SmfRssaID
       MAX-ACCESS  not-accessible
       STATUS      current
       DESCRIPTION
           "The index for this entry.  This object identifies
            the particular RSSA algorithm in this MIB
            module."
            module.  Example RSSAs are found in the
            appendix of [SMF]."
       ::= { smfRssaCapabilitiesEntry 1 }

   smfRssaCapabilitiesName OBJECT-TYPE
       SYNTAX      SnmpAdminString
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
           "The textual name of this RSSA algorithm.
           "
       ::= { smfRssaCapabilitiesEntry 2 }
            Currently defined names are:
                Classical Flooding - cF,
                Source-based MultiPoint
                    Relay - sMPR,
                Essential Connecting Dominating
                    Set - eCDS,
                MultiPoint Relay Connected
                    Dominating Set - mprCDS.

           "
       ::= { smfRssaCapabilitiesEntry 2 }

   smfRssaCapabilitiesReference OBJECT-TYPE
       SYNTAX      SnmpAdminString
       MAX-ACCESS  read-only
       STATUS      current
       DESCRIPTION
           "This object contains a published reference
            to the document that defines this algorithm.
           "
       ::= { smfRssaCapabilitiesEntry 3 }

   --
   -- smfConfigurationGroup
   --
   --    This group contains the SMF objects that configure specific
   --    options that determine the overall performance and operation
   --    of the multicast forwarding process for the router device
   --    and its interfaces.
   --

   smfConfigurationGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 2 }

   smfAdminStatus  OBJECT-TYPE
      SYNTAX      SmfStatus
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The configured status of the SMF process
          on this device.  Enabled(1) means that
          SMF is configured to run on this device.
          Disabled(2) mean that the SMF process
          is configured off.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 1 }

   -- Note: need to better define the algorithm to
   --   choose the smfRouterID.
   smfRouterIDAddrType  OBJECT-TYPE
      SYNTAX      InetAddressType
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The address type of the address used for
          SMF ID of this router as specified
          in the 'smfRouterID' next.

          This can be set by the management station, must
          the smfRouterID must be a routable address
          assigned to this router.  If the management
          station does not assign this value, then the
          router should choose the highest IP address
          assigned to this router.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 2 }

   smfRouterID  OBJECT-TYPE
      SYNTAX      InetAddress
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The IP address used as the SMF router ID.
          this can be set by the management station.
          If not explicitly set, then the device
          should select a routable IP address
          assigned to this router for use as
          the 'smfRouterID'.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 3 }

   smfConfiguredOpMode  OBJECT-TYPE
      SYNTAX      INTEGER {
                          withNHDP(1),
                          cdsAwareRouting(2),
                          crossLayer(3),
                          other(4)
                          }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The SMF RSS node operational mode. mode as defined
          in the TEXTUAL CONVENTION for `SmfOpModeID'
          and in [SMF]..

          The value withNHDP(1) indicates ... Independent
          Mode of operation.

          The value cdsAwareRouting(2) indicates ...
          CDS-aware Routing Mode of operation.

          The value crossLayer(3) indicates... . indicates
          Cross-layer Mode of operation.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 2 4 }

   smfConfiguredRssa  OBJECT-TYPE
      SYNTAX      SmfRssaID
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The SMF RSS currently operational algorithm.

          The value cf(1) indicates ...

          The value experimental(240-255) indicates... . algorithm
          as defined in the TEXTUAL CONVENTION for
          `SmfRssaID' and in [SMF].

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 3 5 }

   smfRssaMember  OBJECT-TYPE
      SYNTAX      INTEGER {
                          potential(1),
                          always(2),
                          never(3)
                          }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The RSSA downselects a set of forwarders for
          multicast forwarding.  Sometimes it is useful
          to force an agent to be included or excluded
          from the resulting RSS.  This object is a
          switch to allow for this behavior.

          The value potential(1) allows the selected
          RSSA to determine if this agent is included
          or excluded from the RSS.

          The value always(1) forces the selected
          RSSA include this agent in the RSS.

          The value never(3) forces the selected
          RSSA to exclude this agent from the RSS.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 4 6 }

   smfIpv4Dpd  OBJECT-TYPE
      SYNTAX      INTEGER {
                          identificationBased(1),
                          hashBased(2)
                          }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The current method for IPv4 duplicate packet
          detection.

          The value identificationBased(1)
          indicates...
          indicates that the duplicate packet
          detection relies upon header information
          in the multicast packets to identify
          previously received packets.

          The value 'hashBased(2) indicates... . indicates that the
          routers duplicate packet detection is based
          upon comparing a hash over the packet fields.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 5 7 }

   smfIpv6Dpd  OBJECT-TYPE
      SYNTAX      INTEGER {
                          identificationBased(1),
                          hashBased(2)
                          }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The current method for IPv6 duplicate packet
          detection.

          The value identificationBased(1)
          indicates...

          The value 'hashBased(2) indicates... .

          This values indicate the type of method used
          for duplicate packet detection as described
          the previous description for the object
          `smfIpv4Dpd'.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 6 8 }

   smfMaxPktLifetime  OBJECT-TYPE
      SYNTAX      Integer32 (0..65535)
      UNITS       "Seconds"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The estimate of the network packet
          traversal time.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
      DEFVAL { 60 }
   ::= { smfConfigurationGroup 7 9 }

   smfDpdMaxMemorySize  OBJECT-TYPE
      SYNTAX      Integer32 (0..65535)
      UNITS       "Kilo-Bytes"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The locally reserved memory for storage
          of cached DPD records for both IPv4 and
          IPv6 methods.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.

         "
      DEFVAL { 1024 }
   ::= { smfConfigurationGroup 8 10 }

   smfDpdEntryMaxLifetime  OBJECT-TYPE
      SYNTAX      Integer32 (0..65525)
      UNITS       "Seconds"
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "The maximum lifetime of a cached DPD
          record in the local device storage.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
      DEFVAL { 600 }
   ::= { smfConfigurationGroup 9 11 }

   --
   -- Configuration of messages to be included in
   -- NHDP message exchanges in support of SMF
   -- operations.
   --

   smfNhdpRssaMesgTLVIncluded  OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "Indicates

   -- Note: need to clarify whether the associated NHDP messages
          include the RSSA Message TLV, or not.  This
          is an optional SMF operational setting.
          The value true(1) indicates that this TLV is
          included; the value false(2) indicates that it is not included.

          This object an option
   --  or is persistent and required when written
          the entity SHOULD save the change smfOpMode is set
   --  to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 10 }

   smfNhdpRssaAddrBlockTLVIncluded 'independent'.
   smfNhdpRssaMesgTLVIncluded  OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "Indicates whether the associated NHDP messages
          include the RSSA Address Block Message TLV, or not.  This
          is an optional SMF operational setting.
          The value true(1) indicates that this TLV is
          included; the value false(2) indicates that it
          is not included.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 11 12 }

   smfNhdpRouterPriorityTLVIncluded
   smfNhdpRssaAddrBlockTLVIncluded  OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
         "Indicates whether the associated NHDP messages
          include the RSSA Router Priority Address Block TLV, or not.
          This is an optional SMF operational setting.
          The value true(1) indicates that this TLV is
          included; the value false(2) indicates that it
          is not included.

          This object is persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 12 13 }

   --
   -- Table identifying configured multicast addresses to be forwarded.
   --

   smfConfiguredAddrForwardingTable  OBJECT-TYPE
      SYNTAX     SEQUENCE OF SmfConfiguredAddrForwardingEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The (conceptual) table containing information on multicast
          addresses which are to be forwarded by the SMF process.

          Entries in this table are configured.  As well, addresses
          to be forwarded by the SMF device can be dynamically
          discovered by other means.  The corresponding state
          table, smfDiscoveredAddrForwardingTable, contains
          these additional, dynamically discovered address for
          forwarding.

          Each row is associated with a range of multicast
          addresses, and ranges for different rows must be disjoint.

          The objects in this table are persistent and when written
          the entity SHOULD save the change to
          non-volatile storage.
         "
   ::= { smfConfigurationGroup 13 15 }
   smfConfiguredAddrForwardingEntry OBJECT-TYPE
      SYNTAX     SmfConfiguredAddrForwardingEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "An entry (conceptual row) containing the information on a
          particular multicast scope."
      INDEX { smfConfiguredAddrForwardingAddrType,
              smfConfiguredAddrForwardingFirstAddr }
      ::= { smfConfiguredAddrForwardingTable 1 }

   SmfConfiguredAddrForwardingEntry ::= SEQUENCE {
      smfConfiguredAddrForwardingAddrType      InetAddressType,
      smfConfiguredAddrForwardingFirstAddr     InetAddress,
      smfConfiguredAddrForwardingLastAddr      InetAddress,
      smfConfiguredAddrForwardingStatus        RowStatus
   }

   smfConfiguredAddrForwardingAddrType OBJECT-TYPE
      SYNTAX     InetAddressType
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The type of the addresses in the multicast forwarding
          range.  Legal values correspond to the subset of
          address families for which multicast address allocation
          is supported."
   ::= { smfConfiguredAddrForwardingEntry 1 }

   smfConfiguredAddrForwardingFirstAddr OBJECT-TYPE
      SYNTAX     InetAddress (SIZE(0..20))
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The first address in the multicast scope range.  The type
          of this address is determined by the value of the
          smfConfiguredAddrForwardingAddrType object."
   ::= { smfConfiguredAddrForwardingEntry 2 }

   smfConfiguredAddrForwardingLastAddr OBJECT-TYPE
      SYNTAX     InetAddress (SIZE(0..20))
      MAX-ACCESS read-create
      STATUS     current
      DESCRIPTION
         "The last address in the multicast scope range.
          The type of this address is determined by the
          value of the smfConfiguredAddrForwardingAddrType
          object."

   ::= { smfConfiguredAddrForwardingEntry 3 }

   smfConfiguredAddrForwardingStatus OBJECT-TYPE
      SYNTAX     RowStatus
      MAX-ACCESS read-create
      STATUS     current
      DESCRIPTION
         "The status of this row, by which new entries may be
          created, or old entries deleted from this table.  If write
          access is supported, the other writable objects in this
          table may be modified even while the status is `active'."
   ::= { smfConfiguredAddrForwardingEntry 4 }

   --
   -- SMF Interfaces Configuration Table
   --

   smfInterfaceTable  OBJECT-TYPE
      SYNTAX      SEQUENCE OF SmfInterfaceEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The SMF Interface Table describes the SMF
          interfaces that are participating in the
          SMF packet forwarding process. The ifIndex is
          from the interfaces group defined in the
          Interfaces Group MIB.

          The objects in this table are persistent
          and when written the entity SHOULD save
          the change to non-volatile storage.
          "
      REFERENCE
         "RFC 2863 - The Interfaces Group MIB, McCloghrie,
          K., and F. Kastenholtz, June 2000."
   ::= { smfConfigurationGroup 14 16 }

   smfInterfaceEntry OBJECT-TYPE
      SYNTAX      SmfInterfaceEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The SMF interface entry describes one SMF
          interface as indexed by its ifIndex."
      INDEX { smfIfIndex }
   ::= { smfInterfaceTable 1 }
   SmfInterfaceEntry ::=
      SEQUENCE {
         smfIfIndex        InterfaceIndexOrZero,
         smfIfAdminStatus  SmfStatus,
         smfIfRowStatus    RowStatus
         }

   smfIfIndex  OBJECT-TYPE
      SYNTAX      InterfaceIndexOrZero
      MAX-ACCESS  not-accessible  read-only
      STATUS      current
      DESCRIPTION
         "The ifIndex for this SMF interface."
      ::= { smfInterfaceEntry 1 }

   smfIfAdminStatus OBJECT-TYPE
      SYNTAX      SmfStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
          "The SMF interface's administrative status.
          The value 'enabled' denotes that the interface
          is running the SMF forwarding process.
          The value 'disabled' denotes that the interface is
          external to the SMF forwarding process.
          "
      ::= { smfInterfaceEntry 2 }

   smfIfRowStatus  OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
         "This object permits management of the table
          by facilitating actions such as row creation,
          construction, and destruction. The value of
          this object has no effect on whether other
          objects in this conceptual row can be
          modified."
   ::= { smfInterfaceEntry 3 }

   --
   -- smfStateGroup
   --
   --    Contains information describing the current state of the SMF
   --    process such as the current inclusion in the RS or not.

   --

   smfStateGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 3 }

   smfNodeRsStatusIncluded  OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "The current status of the SMF node in the context of
          the MANETs relay set. A value of true(1) indicates
          that the node is currently part of the MANET Relay
          Set. A value of false(2) indicates that the node
          is currently not part of the MANET Relay Set."
   ::= { smfStateGroup 1 }

   smfDpdMemoryOverflow  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "The number of times that the memory for caching
          records for DPD overran and records had to be flushed.
          The number of records to be flushed upon a buffer
          overflow is an implementation specific decision.
         "
   ::= { smfStateGroup 2 }

   --
   -- Dynamically Discovered Multicast Addr Table
   --

   smfDiscoveredAddrForwardingTable  OBJECT-TYPE
      SYNTAX     SEQUENCE OF SmfDiscoveredAddrForwardingEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The (conceptual) table containing information on multicast
          addresses which are to be forwarded by the SMF process.

          Entries in this table are configured.  As well, addresses
          to be forwarded by the SMF device can be dynamically
          discovered by other means.  The corresponding state
          table, smfDiscoveredAddrForwardingTable contains
          these additional, dynamically discovered address for
          forwarding.

          Each row is associated with a range of
          multicast addresses, and ranges for different rows
          must be disjoint.
         "
   ::= { smfStateGroup 3 }

   smfDiscoveredAddrForwardingEntry OBJECT-TYPE
      SYNTAX     SmfDiscoveredAddrForwardingEntry
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "An entry (conceptual row) containing the information on a
          particular multicast scope."
      INDEX { smfDiscoveredAddrForwardingAddrType,
              smfDiscoveredAddrForwardingFirstAddr }
      ::= { smfDiscoveredAddrForwardingTable 1 }

   SmfDiscoveredAddrForwardingEntry ::= SEQUENCE {
      smfDiscoveredAddrForwardingAddrType   InetAddressType,
      smfDiscoveredAddrForwardingFirstAddr  InetAddress,
      smfDiscoveredAddrForwardingLastAddr   InetAddress,
      smfDiscoveredAddrForwardingStatus     RowStatus
   }

   smfDiscoveredAddrForwardingAddrType OBJECT-TYPE
      SYNTAX     InetAddressType
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The type of the addresses in the multicast forwarding
          range.  Legal values correspond to the subset of
          address families for which multicast address allocation
          is supported."
   ::= { smfDiscoveredAddrForwardingEntry 1 }

   smfDiscoveredAddrForwardingFirstAddr OBJECT-TYPE
      SYNTAX     InetAddress (SIZE(0..20))
      MAX-ACCESS not-accessible
      STATUS     current
      DESCRIPTION
         "The first address in the multicast scope range.  The type
          of this address is determined by the value of the
          smfConfiguredAddrForwardingAddrType object."
   ::= { smfDiscoveredAddrForwardingEntry 2 }

   smfDiscoveredAddrForwardingLastAddr OBJECT-TYPE
      SYNTAX     InetAddress (SIZE(0..20))
      MAX-ACCESS read-create
      STATUS     current
      DESCRIPTION
         "The last address in the multicast scope range.
          The type of this address is determined by the
          value of the smfConfiguredAddrForwardingAddrType
          object."
   ::= { smfDiscoveredAddrForwardingEntry 3 }

   smfDiscoveredAddrForwardingStatus OBJECT-TYPE
      SYNTAX     RowStatus
      MAX-ACCESS read-create
      STATUS     current
      DESCRIPTION
         "The status of this row, by which new entries may be
          created, or old entries deleted from this table.  If write
          access is supported, the other writable objects in this
          table may be modified even while the status is `active'."
   ::= { smfDiscoveredAddrForwardingEntry 4 }

   --
   -- SMF Neighbor Table
   --

   smfNeighborTable  OBJECT-TYPE
      SYNTAX       SEQUENCE OF SmfNeighborEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF NeighborTable describes the
          current neighbor nodes, their address
          and SMF RSSA and the interface on which
          they can be reached."
      REFERENCE
         "Simplified Multicast Forwarding for MANET
          (SMF), Macker, J., July 2009.
          Section 7: SMF Neighborhood Discovery
          Requirements."
   ::= { smfStateGroup 4 }

   smfNeighborEntry  OBJECT-TYPE
      SYNTAX       SmfNeighborEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF Neighbor Table contains the
          set of one-hop neighbors, the interface
          they are reachable on and the SMF RSSA
          they are currently running."
      INDEX { smfNeighborIpAddrType,
              smfNeighborIpAddr,
              smfNeighborPrefixLen }
   ::= { smfNeighborTable 1 }

   SmfNeighborEntry ::=
      SEQUENCE {
         smfNeighborIpAddrType        InetAddressType,
         smfNeighborIpAddr            InetAddress,
         smfNeighborPrefixLen         InetAddressPrefixLength,
         smfNeighborRSSA              SmfRssaID,
         smfNeighborNextHopInterface  InterfaceIndexOrZero
         }

   smfNeighborIpAddrType  OBJECT-TYPE
      SYNTAX      InetAddressType
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The neighbor IP address type."
   ::= { smfNeighborEntry 1 }

   smfNeighborIpAddr  OBJECT-TYPE
      SYNTAX      InetAddress
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The neighbor Inet IPv4 or IPv6 address."
   ::= { smfNeighborEntry 2 }

   smfNeighborPrefixLen  OBJECT-TYPE
      SYNTAX      InetAddressPrefixLength
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The prefix length. This is a decimal value that
          indicates the number of contiguous, higher-order
          bits of the address that make up the network
          portion of the address."
   ::= { smfNeighborEntry 3 }

   smfNeighborRSSA  OBJECT-TYPE
      SYNTAX       SmfRssaID
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
         "The current RSSA running on the neighbor.
          The list is identical to that described
          above for the smfRssa object."
   ::= { smfNeighborEntry 4 }

   smfNeighborNextHopInterface OBJECT-TYPE
      SYNTAX       InterfaceIndexOrZero
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
         "The interface ifIndex over which the
          neighbor is reachable in one-hop."
   ::= { smfNeighborEntry 5 }

   --
   -- SMF Performance Group
   --
   --    Contains objects which help to characterize the
   --    performance of the SMF RSSA process, such as statistics
   --    counters. There are two types of SMF RSSA statistics:
   --    global counters and per interface counters.
   --

   smfPerformanceGroup  OBJECT IDENTIFIER ::= { smfMIBObjects 4 }

   smfGlobalPerfGroup  OBJECT IDENTIFIER ::= { smfPerformanceGroup 1 }

   --
   -- IPv4 packet counters
   --

   smfIpv4MultiPktsRecvTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of
          multicast IPv4 packets received by the
          device."
   ::= { smfGlobalPerfGroup 1 }

   smfIpv4MultiPktsForwardedTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of
          multicast IPv4 packets forwarded by the
          device."
   ::= { smfGlobalPerfGroup 2 }

   smfIpv4DuplMultiPktsDetectedTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of duplicate
          multicast IPv4 packets detected by the
          device."
   ::= { smfGlobalPerfGroup 3 }

   smfIpv4DroppedMultiPktsTTLExceededTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of dropped
          multicast IPv4 packets by the
          device due to TTL exceeded."
   ::= { smfGlobalPerfGroup 4 }

   smfIpv4TTLLargerThanPreviousTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv4 packets
          recieved which have a TTL larger than that
          of a previously recived received identical packet.
         "
   ::= { smfGlobalPerfGroup 5 }

   --
   -- IPv6 packet counters
   --

   smfIpv6MultiPktsRecvTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of
          multicast IPv6 packets received by the
          device."
   ::= { smfGlobalPerfGroup 6 }

   smfIpv6MultiPktsForwardedTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of
          multicast IPv6 packets forwarded by the
          device."
   ::= { smfGlobalPerfGroup 7 }

   smfIpv6DuplMultiPktsDetectedTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of duplicate
          multicast IPv6 packets detected by the
          device."
   ::= { smfGlobalPerfGroup 8 }

   smfIpv6DroppedMultiPktsTTLExceededTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of dropped
          multicast IPv6 packets by the
          device due to TTL exceeded."
   ::= { smfGlobalPerfGroup 9 }

   smfIpv6TTLLargerThanPreviousTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which have a TTL larger than that
          of a previously recived identical packet.
         "
   ::= { smfGlobalPerfGroup 10 }

   smfIpv6HAVAssistsReqdTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which required the HAV assist for DPD.
         "
   ::= { smfGlobalPerfGroup 11 }

   smfIpv6DpdHeaderInsertionsTotal  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which the device inserted the
          DPD header option.
         "
   ::= { smfGlobalPerfGroup 12 }

   --
   -- Per SMF Interface Performance Table
   --

   smfInterfacePerfGroup OBJECT IDENTIFIER ::= { smfPerformanceGroup 2 }

   smfIpv4InterfacePerfTable OBJECT-TYPE
      SYNTAX       SEQUENCE OF SmfIpv4InterfacePerfEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF Interface Performance Table
          describes the SMF statistics per
          interface."
   ::= { smfInterfacePerfGroup 1 }

   smfIpv4InterfacePerfEntry OBJECT-TYPE
      SYNTAX       SmfIpv4InterfacePerfEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF Interface Performance entry
          describes the statistics for a particular
          node interface."
      INDEX { smfIpv4IfPerfIfIndex }
   ::= { smfIpv4InterfacePerfTable 1 }

   SmfIpv4InterfacePerfEntry ::=
      SEQUENCE {
         smfIpv4IfPerfIfIndex                    InterfaceIndexOrZero,
         smfIpv4MultiPktsRecvPerIf               Counter32,
         smfIpv4MultiPktsForwardedPerIf          Counter32,
         smfIpv4DuplMultiPktsDetectedPerIf       Counter32,
         smfIpv4DroppedMultiPktsTTLExceededPerIf Counter32,
         smfIpv4TTLLargerThanPreviousPerIf       Counter32
         }

   smfIpv4IfPerfIfIndex  OBJECT-TYPE
      SYNTAX      InterfaceIndexOrZero
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The ifIndex for this node interface
          that is collecting this set of
          performance management statistics."
   ::= { smfIpv4InterfacePerfEntry 1 }

   smfIpv4MultiPktsRecvPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of
          multicast IP packets received by the
          device on this interface."
   ::= { smfIpv4InterfacePerfEntry 2 }

   smfIpv4MultiPktsForwardedPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of
          multicast IP packets forwarded by the
          device on this interface."
   ::= { smfIpv4InterfacePerfEntry 3 }

   smfIpv4DuplMultiPktsDetectedPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of duplicate
          multicast IP packets detected by the
          device on this interface."
   ::= { smfIpv4InterfacePerfEntry 4 }

   smfIpv4DroppedMultiPktsTTLExceededPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of dropped
          multicast IPv4 packets by the
          device due to TTL exceeded."
   ::= { smfIpv4InterfacePerfEntry 5 }

   smfIpv4TTLLargerThanPreviousPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv4 packets
          recieved which have a TTL larger than that
          of a previously recived identical packet.
         "
   ::= { smfIpv4InterfacePerfEntry 6 }

   smfIpv6InterfacePerfTable OBJECT-TYPE
      SYNTAX       SEQUENCE OF SmfIpv6InterfacePerfEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF Interface Performance Table
          describes the SMF statistics per
          interface."
   ::= { smfInterfacePerfGroup 2 }

   smfIpv6InterfacePerfEntry OBJECT-TYPE
      SYNTAX       SmfIpv6InterfacePerfEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
         "The SMF Interface Performance entry
          describes the statistics for a particular
          node interface."
      INDEX { smfIpv6IfPerfIfIndex }
   ::= { smfIpv6InterfacePerfTable 1 }

   SmfIpv6InterfacePerfEntry ::=
      SEQUENCE {
         smfIpv6IfPerfIfIndex                    InterfaceIndexOrZero,
         smfIpv6MultiPktsRecvPerIf               Counter32,
         smfIpv6MultiPktsForwardedPerIf          Counter32,
         smfIpv6DuplMultiPktsDetectedPerIf       Counter32,
         smfIpv6DroppedMultiPktsTTLExceededPerIf Counter32,
         smfIpv6TTLLargerThanPreviousPerIf       Counter32,
         smfIpv6HAVAssistsReqdPerIf              Counter32,
         smfIpv6DpdHeaderInsertionsPerIf         Counter32
         }

   smfIpv6IfPerfIfIndex  OBJECT-TYPE
      SYNTAX      InterfaceIndexOrZero
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
         "The ifIndex for this node interface
          that is collecting this set of
          performance management statistics.

          For packets generated locally at
          this node, performance counters
          are assigned to the loopback
          interface.
         "
   ::= { smfIpv6InterfacePerfEntry 1 }

   smfIpv6MultiPktsRecvPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of
          multicast IP packets received by the
          device on this interface."
   ::= { smfIpv6InterfacePerfEntry 2 }

   smfIpv6MultiPktsForwardedPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of
          multicast IP packets forwarded by the
          device on this interface."
   ::= { smfIpv6InterfacePerfEntry 3 }

   smfIpv6DuplMultiPktsDetectedPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of duplicate
          multicast IP packets detected by the
          device on this interface."
   ::= { smfIpv6InterfacePerfEntry 4 }

   smfIpv6DroppedMultiPktsTTLExceededPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the number of dropped
          multicast IP packets by the
          device on this interface due to TTL
          exceeded."
   ::= { smfIpv6InterfacePerfEntry 5 }

   smfIpv6TTLLargerThanPreviousPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which have a TTL larger than that
          of a previously recived identical packet.
         "
   ::= { smfIpv6InterfacePerfEntry 6 }

   smfIpv6HAVAssistsReqdPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which required the HAV assist for DPD.
         "
   ::= { smfIpv6InterfacePerfEntry 7 }
   smfIpv6DpdHeaderInsertionsPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only

   smfIpv6DpdHeaderInsertionsPerIf  OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
         "A counter of the total number of IPv6 packets
          recieved which the device inserted the
          DPD header option.
         "
   ::= { smfIpv6InterfacePerfEntry 8 }
   --
   -- Notifications
   --

smfMIBNotifControl OBJECT IDENTIFIER ::= { smfMIBNotifications 1 }
smfMIBNotifObjects OBJECT IDENTIFIER ::= { smfMIBNotifications 2 }
smfMIBNotifStates  OBJECT IDENTIFIER ::= { smfMIBNotifications 3 }

   -- smfMIBNotifControl
   smfSetNotification OBJECT-TYPE
          SYNTAX       OCTET STRING (SIZE(4))
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A 4-octet string serving as a bit map for
             the notification events defined by the SMF MIB
             notifications. This object is used to enable
             and disable specific SMF MIB notifications where
             a 1 in the bit field represents enabled. The
             right-most bit (least significant) represents
             notification 0.

             This object is persistent and when written
             the entity SHOULD save the change to
             non-volatile storage.
             "
           ::= { smfMIBNotifControl 1 }

   smfDpdMemoryOverflowThreshold OBJECT-TYPE
          SYNTAX       Integer32 (0..255)
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A threshold value for the
              `smfDpdmemoryOverflowEvents' object.
              If the number of occurences exceeds
              this threshold within the previous
              number of seconds
              'smfDpdMemoryOverflowWindow',
              then the `smfDpdMemoryOverflowEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 2 }

   smfDpdMemoryOverflowWindow OBJECT-TYPE
          SYNTAX       TimeTicks
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A time window value for the
              `smfDpdmemoryOverflowEvents' object.
              If the number of occurences exceeds
              the `smfDpdMemoryOverflowThreshold'
              within the previous number of seconds
              'smfDpdMemoryOverflowWindow',
              then the `smfDpdMemoryOverflowEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 3 }

   smfIpv4DuplMultiPktsDetectedTotalThreshold OBJECT-TYPE
          SYNTAX       Integer32 (0..255)
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A threshold value for the
              `smfIpv4DuplMultiPktsDetectedTotal'
              object.  If the number of occurences
              exceeds this threshold within the
              previous number of seconds
              `smfIpv4DuplMultiPktsDetectedTotalWindow',
              then the
              `smfIpv4DuplMultiPktsDetectedTotalEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 4 }

   smfIpv4DuplMultiPktsDetectedTotalWindow OBJECT-TYPE
          SYNTAX       TimeTicks
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A time window value for the
              `smfIpv4DuplMultiPktsDetectedTotalEvents'
              object.  If the number of occurences
              exceeds the
              `smfIpv4DuplMultiPktsDetectedTotalThreshold'
              within the previous number of seconds
              'smfIpv4DuplMultiPktsDetectedTotalWindow',
              then the
              `smfIpv4DuplMultiPktsDetectedTotalEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 5 }

   smfIpv6DuplMultiPktsDetectedTotalThreshold OBJECT-TYPE
          SYNTAX       Integer32 (0..255)
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A threshold value for the
              `smfIpv6DuplMultiPktsDetectedTotal'
              object.  If the number of occurences
              exceeds this threshold within the
              previous number of seconds
              `smfIpv6DuplMultiPktsDetectedTotalWindow',
              then the
              `smfIpv6DuplMultiPktsDetectedTotalEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 6 }

   smfIpv6DuplMultiPktsDetectedTotalWindow OBJECT-TYPE
          SYNTAX       TimeTicks
          MAX-ACCESS   read-write
          STATUS       current
          DESCRIPTION
             "A time window value for the
              `smfIpv6DuplMultiPktsDetectedTotalEvents'
              object.  If the number of occurences
              exceeds the
              `smfIpv6DuplMultiPktsDetectedTotalThreshold'
              within the previous number of seconds
              'smfIpv6DuplMultiPktsDetectedTotalWindow',
              then the
              `smfIpv6DuplMultiPktsDetectedTotalEvent'
              notification is sent.
             "
           ::= { smfMIBNotifControl 7 }

   -- smfMIBNotifObjects

   smfAdminStatusChange NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfAdminStatus   -- The new status of the
                                     --     SMF process.
                  }
          STATUS       current
          DESCRIPTION
             "smfAdminStatusChange is a notification sent when a
              the 'smfAdminStatus' object changes.
             "
          ::= { smfMIBNotifObjects 1 }

   smfConfiguredOpModeChange NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfConfiguredOpMode  -- The new Operations
                                     --     Mode of the SMF
                                     --     process.
                  }
          STATUS       current
          DESCRIPTION
             "smfConfiguredOpModeChange is a notification
              sent when a the 'smfConfiguredOpMode' object
              changes.
             "
          ::= { smfMIBNotifObjects 2 }

   smfConfiguredRssaChange NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfConfiguredRssa -- The new RSSA for
                                     --     the SMF process.
                  }
          STATUS       current
          DESCRIPTION
             "smfAdminStatusChange is a notification sent when a
              the 'smfConfiguredRssa' object changes.
             "
          ::= { smfMIBNotifObjects 3 }

   smfIfAdminStatusChange NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,      -- The originator of
                                     --     the notification.
                    smfIfIndex,      -- The interface whose
                                     --     status has changed.
                    smfIfAdminStatus   -- The new status of the
                                     --     SMF interface.
                  }

          STATUS       current
          DESCRIPTION
             "smfIfAdminStatusChange is a notification sent when a
              the 'smfIfAdminStatus' object changes.
             "
          ::= { smfMIBNotifObjects 4 }

    smfDpdMemoryOverflowEvent NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfDpdMemoryOverflow -- The counter of
                                     --     the overflows.
             }
          STATUS       current
          DESCRIPTION
             "smfDpdMemoryOverflowEvents is sent when the
              number of memory overflow events exceeds the
              the 'smfDpdMemoryOverflowThreshold' within the
              previous number of seconds defined by the
              'smfDpdMemoryOverflowWindow'.
             "
          ::= { smfMIBNotifObjects 5 }

   smfIpv4DuplMultiPktsDetectedTotalEvents NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.
                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfIpv4DuplMultiPktsDetectedTotal -- The
                                     --     counter of detected
                                     --     duplicates.
             }
          STATUS       current
          DESCRIPTION
             "smfIpv4DuplMultiPktsDetectedTotal is a
              notification sent when the number of
              IPv4 duplicate packets detected exceeds the
              'smfIpv4DuplMultiPktsDetectedTotalThreshold'
              during the previous number of seconds
              'smfIpv4DuplPktsDetectedTotalWindow'.
             "
          ::= { smfMIBNotifObjects 6 }

   smfIpv6DuplMultiPktsDetectedTotalEvents NOTIFICATION-TYPE
          OBJECTS { smfRouterIDAddrType, -- The originator of
                                     --     the notification.

                    smfRouterID,     -- The originator of
                                     --     the notification.
                    smfIpv6DuplMultiPktsDetectedTotal -- The
                                     --     counter of detected
                                     --     duplicates.
             }
          STATUS       current
          DESCRIPTION
         "A counter of
             "smfIpv6DuplMultiPktsDetectedTotal is a
              notification sent when the total number of
              IPv6 duplicate packets
          recieved which detected exceeds the device inserted
              'smfIpv6DuplMultiPktsDetectedTotalThreshold'
              during the
          DPD header option. previous number of seconds
              'smfIpv6DuplPktsDetectedTotalWindow'.
             "
          ::= { smfIpv6InterfacePerfEntry 8 smfMIBNotifObjects 7 }

    -- smfMIBNotifStates
    -- Notifications
   --

   -- Note:  What notifications do we want for this MIB?   is empty.

   --
   -- Compliance Statements
   --

   -- Note: need to update the Compliance section once the mib
   --       objects stablize.

   smfCompliances  OBJECT IDENTIFIER ::= { smfMIBConformance 1 }
   smfMIBGroups    OBJECT IDENTIFIER ::= { smfMIBConformance 2 }

   smfBasicCompliance  MODULE-COMPLIANCE
      STATUS current
      DESCRIPTION "The basic implementation requirements for
                   managed network entities that implement
                   the SMF RSSA process."
      MODULE  -- this module
      MANDATORY-GROUPS { smfCapabObjectsGroup,
                         smfConfigObjectsGroup }
   ::= { smfCompliances 1 }

   smfFullCompliance MODULE-COMPLIANCE
      STATUS current
      DESCRIPTION "The full implementation requirements for
                   managed network entities that implement
                   the SMF RSSA process."

      MODULE  -- this module
      MANDATORY-GROUPS { smfCapabObjectsGroup,
                         smfConfigObjectsGroup,
                         smfStateObjectsGroup,
                         smfPerfObjectsGroup
                         smfPerfObjectsGroup,
                         smfNotifObjectsGroup,
                         smfNotificationsGroup
                       }
   ::= { smfCompliances 2 }

   --
   -- Units of Conformance
   --

   smfCapabObjectsGroup OBJECT-GROUP
      OBJECTS {
              smfOpModeCapabilitiesName,
              smfOpModeCapabilitiesReference,

              smfRssaCapabilitiesName,
              smfRssaCapabilitiesReference
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF configuration objects implemented
          in this module."
   ::= { smfMIBGroups 1 }

   smfConfigObjectsGroup OBJECT-GROUP
      OBJECTS {
              smfAdminStatus,
              smfRouterIDAddrType,
              smfRouterID,
              smfIfIndex,
              smfConfiguredOpMode,
              smfConfiguredRssa,
              smfRssaMember,
              smfIpv4Dpd,
              smfIpv6Dpd,
              smfMaxPktLifetime,
              smfDpdMaxMemorySize,
              smfDpdEntryMaxLifetime,
              smfNhdpRssaMesgTLVIncluded,
              smfNhdpRssaAddrBlockTLVIncluded,
              smfNhdpRouterPriorityTLVIncluded,

              smfConfiguredAddrForwardingLastAddr,
              smfConfiguredAddrForwardingStatus,
              smfIfAdminStatus,
              smfIfRowStatus
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF configuration objects implemented
          in this module."
   ::= { smfMIBGroups 2 }

   smfStateObjectsGroup  OBJECT-GROUP
      OBJECTS {
              smfNodeRsStatusIncluded,
              smfDpdMemoryOverflow,

              smfDiscoveredAddrForwardingLastAddr,
              smfDiscoveredAddrForwardingStatus,

              smfNeighborRSSA,
              smfNeighborNextHopInterface
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF state objects implemented
          in this module."
   ::= { smfMIBGroups 3 }

   smfPerfObjectsGroup  OBJECT-GROUP
      OBJECTS {
              smfIpv4MultiPktsRecvTotal,
              smfIpv4MultiPktsForwardedTotal,
              smfIpv4DuplMultiPktsDetectedTotal,
              smfIpv4DroppedMultiPktsTTLExceededTotal,
              smfIpv4TTLLargerThanPreviousTotal,

              smfIpv6MultiPktsRecvTotal,
              smfIpv6MultiPktsForwardedTotal,
              smfIpv6DuplMultiPktsDetectedTotal,
              smfIpv6DroppedMultiPktsTTLExceededTotal,
              smfIpv6TTLLargerThanPreviousTotal,
              smfIpv6HAVAssistsReqdTotal,
              smfIpv6DpdHeaderInsertionsTotal,

              smfIpv4MultiPktsRecvPerIf,
              smfIpv4MultiPktsForwardedPerIf,
              smfIpv4DuplMultiPktsDetectedPerIf,
              smfIpv4DroppedMultiPktsTTLExceededPerIf,
              smfIpv4TTLLargerThanPreviousPerIf,
              smfIpv6MultiPktsRecvPerIf,
              smfIpv6MultiPktsForwardedPerIf,
              smfIpv6DuplMultiPktsDetectedPerIf,
              smfIpv6DroppedMultiPktsTTLExceededPerIf,
              smfIpv6TTLLargerThanPreviousPerIf,
              smfIpv6HAVAssistsReqdPerIf,
              smfIpv6DpdHeaderInsertionsPerIf
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF performance objects implemented
          in this module by total and per interface."
   ::= { smfMIBGroups 4 }

   smfNotifObjectsGroup  OBJECT-GROUP
      OBJECTS {
              smfSetNotification,
              smfDpdMemoryOverflowThreshold,
              smfDpdMemoryOverflowWindow,
              smfIpv4DuplMultiPktsDetectedTotalThreshold,
              smfIpv4DuplMultiPktsDetectedTotalWindow,
              smfIpv6DuplMultiPktsDetectedTotalThreshold,
              smfIpv6DuplMultiPktsDetectedTotalWindow
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF notification control
          objects implemented in this module."
   ::= { smfMIBGroups 5 }

   smfNotificationsGroup  NOTIFICATION-GROUP
      NOTIFICATIONS {
              smfAdminStatusChange,
              smfConfiguredOpModeChange,
              smfConfiguredRssaChange,
              smfIfAdminStatusChange,
              smfDpdMemoryOverflowEvent,
              smfIpv4DuplMultiPktsDetectedTotalEvents,
              smfIpv6DuplMultiPktsDetectedTotalEvents
      }
      STATUS  current
      DESCRIPTION
         "Set of SMF notifications implemented
          in this module."
   ::= { smfMIBGroups 6 }
   END

8.  Security Considerations

   [TODO] Each specification that defines one or more MIB modules MUST
   contain a section that discusses security considerations relevant to
   those modules.  This section MUST be patterned after the latest
   approved template (available at
   http://www.ops.ietf.org/mib-security.html).  Remember that the
   objective is not to blindly copy text from the template, but rather
   to think and evaluate the risks/vulnerabilities and then state/
   document the result of this evaluation.

   [TODO] if you have any read-write and/or read-create objects, please
   include the following boilerplate paragraph.

   There are a number of management objects defined in this MIB module
   with a MAX-ACCESS clause of read-write and/or read-create.  Such
   objects may be considered sensitive or vulnerable in some network
   environments.  The support for SET operations in a non-secure
   environment without proper protection can have a negative effect on
   network operations.  These are the tables and objects and their
   sensitivity/vulnerability:

   o  [TODO] writable MIB objects that could be especially disruptive if
      abused MUST be explicitly listed by name and the associated
      security risks MUST be spelled out; RFC 2669 has a very good
      example.

   o  [TODO] list the writable tables and objects and state why they are
      sensitive.

   [TODO] else if there are no read-write objects in your MIB module,
   use the following boilerplate paragraph.

   There are no management objects defined in this MIB module that have
   a MAX-ACCESS clause of read-write and/or read-create.  So, if this
   MIB module is implemented correctly, then there is no risk that an
   intruder can alter or create any management objects of this MIB
   module via direct SNMP SET operations.

   [TODO] if you have any sensitive readable objects, please include the
   following boilerplate paragraph.

   Some of the readable objects in this MIB module (i.e., objects with a
   MAX-ACCESS other than not-accessible) may be considered sensitive or
   vulnerable in some network environments.  It is thus important to
   control even GET and/or NOTIFY access to these objects and possibly
   to even encrypt the values of these objects when sending them over
   the network via SNMP.  These are the tables and objects and their
   sensitivity/vulnerability:

   o  [TODO] you must explicitly list by name any readable objects that
      are sensitive or vulnerable and the associated security risks MUST
      be spelled out (for instance, if they might reveal customer
      information or violate personal privacy laws such as those of the
      European Union if exposed to unauthorized parties)

   o  [TODO] list the tables and objects and state why they are
      sensitive.

   [TODO] discuss what security the protocol used to carry the
   information should have.  The following three boilerplate paragraphs
   should not be changed without very good reason.  Changes will almost
   certainly require justification during IESG review.

   SNMP versions prior to SNMPv3 did not include adequate security.
   Even if the network itself is secure (for example by using IPSec),
   even then, there is no control as to who on the secure network is
   allowed to access and GET/SET (read/change/create/delete) the objects
   in this MIB module.

   It is RECOMMENDED that implementers consider the security features as
   provided by the SNMPv3 framework (see [RFC3410], section 8),
   including full support for the SNMPv3 cryptographic mechanisms (for
   authentication and privacy).

   Further, deployment of SNMP versions prior to SNMPv3 is NOT
   RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
   enable cryptographic security.  It is then a customer/operator
   responsibility to ensure that the SNMP entity giving access to an
   instance of this MIB module is properly configured to give access to
   the objects only to those principals (users) that have legitimate
   rights to indeed GET or SET (change/create/delete) them.

9.  IANA Considerations

   [TODO] In order to comply with IESG policy as set forth in
   http://www.ietf.org/ID-Checklist.html, every Internet-Draft that is
   submitted to the IESG for publication MUST contain an IANA
   Considerations section.  The requirements for this section vary
   depending what actions are required of the IANA. see RFC4181 section
   3.5 for more information on writing an IANA clause for a MIB module
   document.

   [TODO] select an option and provide the necessary details.

   Option #1:

        The MIB module in this document uses the following IANA-assigned
        OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

        Descriptor        OBJECT IDENTIFIER value
        ----------        -----------------------

        sampleMIB  { mib-2 XXX }

   Option #2:

   Editor's Note (to be removed prior to publication): the IANA is
   requested to assign a value for "XXX" under the 'mib-2' subtree and
   to record the assignment in the SMI Numbers registry.  When the
   assignment has been made, the RFC Editor is asked to replace "XXX"
   (here and in the MIB module) with the assigned value and to remove
   this note.

   Note well: prior to official assignment by the IANA, a draft document
   MUST use placeholders (such as "XXX" above) rather than actual
   numbers.  See RFC4181 Section 4.5 for an example of how this is done
   in a draft MIB module.

   Option #3:

   This memo includes no request to IANA.

10.  Contributors

   This MIB document uses the template authored by D. Harrington which
   is based on contributions from the MIB Doctors, especially Juergen
   Schoenwaelder, Dave Perkins, C.M.Heard and Randy Presuhn.

11.  Acknowledgements

12.  References

12.1.  Normative References

   [RFC2863]             McCloghrie, K. and F. Kastenholz, "The
                         Interfaces Group MIB", RFC 2863, June 2000.

   [RFC3411]             Harrington, D., Presuhn, R., and B. Wijnen, "An
                         Architecture for Describing Simple Network
                         Management Protocol (SNMP) Management
                         Frameworks", STD 62, RFC 3411, December 2002.

   [RFC3418]             Presuhn, R., "Management Information Base (MIB)
                         for the Simple Network Management Protocol
                         (SNMP)", STD 62, RFC 3418, December 2002.

   [RFC4001]             Daniele, M., Haberman, B., Routhier, S., and J.
                         Schoenwaelder, "Textual Conventions for
                         Internet Network Addresses", RFC 4001,
                         February 2005.

   [RFC2119]             Bradner, S., "Key words for use in RFCs to
                         Indicate Requirement Levels", BCP 14, RFC 2119,
                         March 1997.

   [RFC2578]             McCloghrie, K., Ed., Perkins, D., Ed., and J.
                         Schoenwaelder, Ed., "Structure of Management
                         Information Version 2 (SMIv2)", STD 58,
                         RFC 2578, April 1999.

   [RFC2579]             McCloghrie, K., Ed., Perkins, D., Ed., and J.
                         Schoenwaelder, Ed., "Textual Conventions for
                         SMIv2", STD 58, RFC 2579, April 1999.

   [RFC2580]             McCloghrie, K., Perkins, D., and J.
                         Schoenwaelder, "Conformance Statements for
                         SMIv2", STD 58, RFC 2580, April 1999.

   [I-D.ietf-manet-smf]  Macker, J. and S. Team, "Simplified Multicast
                         Forwarding", draft-ietf-manet-smf-09 draft-ietf-manet-smf-10 (work in
                         progress), July 2009. March 2010.

12.2.  Informative References

   [RFC3410]             Case, J., Mundy, R., Partain, D., and B.
                         Stewart, "Introduction and Applicability
                         Statements for Internet-Standard Management
                         Framework", RFC 3410, December 2002.

Appendix A.  Change Log

   This section tracks the revision history in the development of this
   SMF-MIB.  It will be removed from the final version of this document.

   These changes were made from draft-ietf-manet-dymo-mib-00 draft-ietf-manet-smf-mib-01 to
   draft-ietf-manet-smf-mib-02.

   1.  Added the NotificationGroup to the MIB and updated the
       ConformanceGroup.

   2.  Added the definition of an smfRouterID to the MIB.  This is later
       used in the Notifications to indicate the origin of the event to
       the management station.

   3.  Removed the Router Priority object as this was used only in the
       eCDS algorithm and hence should be contained within the future
       eCDS-MIB.

   4.  Cleaned up the TEXTUAL CONVENTION for the `SmfOpMode'.

   5.  Filled in some of the missing text in various object
       descriptions.

   These changes were made from draft-ietf-manet-smf-mib-00 to
   draft-ietf-manet-dymo-mib-01.
   draft-ietf-manet-dsmf-mib-01.

   1.  Editorial changes to the textual material.  These included the
       addition of the paragraphs on TEXTUAL-CONVENTIONS defined and
       imported into this MIB and relationships to other MIBs.

   2.  Identified those objects in the SMF-MIB requiring non-volatile
       storage.

   3.  Changed the name of the TEXTUAL-CONVENTION 'Status', defined
       within this MIB to 'SmfStatus'.

Appendix B.  Open Issues

   This section contains the set of open issues related to the
   development and design of the SMF-MIB.  This section will not be
   present in the final version of the MIB and will be removed once all
   the open issues have been resolved.

   1.  The text SMF draft states 'NHDP RSSA that use of the SMF Type Message TLV - if NHDP mode is
       selected, then
       optional and is used when the RSSA Message TLV included in router runs NHDP.  But the NHDP
       exchanges.'  Is this and draft
       does not clearly state if the following two TLVs optional and are
       they included as a group or independently use of one another?]. the SMF Address Block TLV is
       also optional.

   2.  Is it useful to track the effectiveness of the coverage of the
       current RSSA?  Is it possible to track this?

   3.  Complete notification group.

   4.  Work on the relationship to other MIBs, IF-MIB, NHDP-MIB.

   5.  Update the text of the document to reflect the final state of the
       MIB.

   6.  Incorporate parameter relationship conditions into their
       DESCRIPTION clauses.

   7.  Complete the security analysis and section.

   8.

   4.  Cleanup all the [TODOs] from the MIB template.

Appendix C.

   ***************************************************************
   * Note to the RFC Editor (to be removed prior to publication) *
   *                                                             *
   * 1) The reference to RFCXXXX within the DESCRIPTION clauses  *
   * of the MIB module point to this draft and are to be         *
   * assigned by the RFC Editor.                                 *
   *                                                             *
   * 2) The reference to RFCXXX2 throughout this document point  *
   * to the current draft-ietf-manet-smf-xx.txt.  This           *
   * need to be replaced with the XXX RFC number.                *
   *                                                             *
   ***************************************************************

Authors' Addresses

   Robert G. Cole
   Johns Hopkins University
   11100 Johns
   US Army CERDEC
   328 Hopkins Road, Room 257
   Laurel, Bldg 245
   Aberdeen Proving Ground, Maryland  21073  21005
   USA

   Phone: +1 443 778 6951 410 278 6779
   EMail: robert.cole@jhuapl.edu robert.g.cole@us.army.mil
   URI:   http://www.cs.jhu.edu/~rgcole/

   Joseph Macker
   Naval Research Laboratory
   Washington, D.C.  20375
   USA

   EMail: macker@itd.nrl.navy.mil

   Brian Adamson
   Naval Research Laboratory
   Washington, D.C.  20375
   USA

   EMail: adamson@itd.nrl.navy.mil
   Sean Harnedy
   Booz Allen Hamilton
   333 City Boulevard West
   Orange, CA  92868
   USA

   EMail: harnedy_sean@bah.com