draft-ietf-lisp-lcaf-22.txt   rfc8060.txt 
Network Working Group D. Farinacci Internet Engineering Task Force (IETF) D. Farinacci
Internet-Draft lispers.net Request for Comments: 8060 lispers.net
Intended status: Experimental D. Meyer Category: Experimental D. Meyer
Expires: June 1, 2017 Brocade ISSN: 2070-1721 Brocade
J. Snijders J. Snijders
NTT NTT
November 28, 2016 February 2017
LISP Canonical Address Format (LCAF) LISP Canonical Address Format (LCAF)
draft-ietf-lisp-lcaf-22
Abstract Abstract
This document defines a canonical address format encoding used in This document defines a canonical address format encoding used in
LISP control messages and in the encoding of lookup keys for the LISP Locator/ID Separation Protocol (LISP) control messages and in the
Mapping Database System. encoding of lookup keys for the LISP Mapping Database System.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This document is not an Internet Standards Track specification; it is
provisions of BCP 78 and BCP 79. published for examination, experimental implementation, and
evaluation.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months This document defines an Experimental Protocol for the Internet
and may be updated, replaced, or obsoleted by other documents at any community. This document is a product of the Internet Engineering
time. It is inappropriate to use Internet-Drafts as reference Task Force (IETF). It represents the consensus of the IETF
material or to cite them other than as "work in progress." community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 7841.
This Internet-Draft will expire on June 1, 2017. Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8060.
Copyright Notice Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Introduction ....................................................4
2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology .....................................................5
3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 2.1. Requirements Language ......................................5
4. LISP Canonical Address Applications . . . . . . . . . . . . . 8 2.2. Definition of Terms ........................................5
4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 8 3. LISP Canonical Address Format Encodings .........................6
4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 9 4. LISP Canonical Address Applications .............................8
4.3. Assigning Geo Coordinates to Locator Addresses . . . . . 11 4.1. Segmentation Using LISP ....................................8
4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 4.2. Carrying AS Numbers in the Mapping Database ................9
4.5. Multicast Group Membership Information . . . . . . . . . 15 4.3. Assigning Geo-Coordinates to Locator Addresses ............10
4.6. Traffic Engineering using Re-encapsulating Tunnels . . . 17 4.4. NAT Traversal Scenarios ...................................11
4.7. Storing Security Data in the Mapping Database . . . . . . 18 4.5. Multicast Group Membership Information ....................13
4.8. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 20 4.6. Traffic Engineering Using Re-encapsulating Tunnels ........15
4.9. Replication List Entries for Multicast Forwarding . . . . 22 4.7. Storing Security Data in the Mapping Database .............16
4.10. Applications for AFI List Type . . . . . . . . . . . . . 23 4.8. Source/Destination 2-Tuple Lookups ........................17
4.10.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 23 4.9. Replication List Entries for Multicast Forwarding .........18
4.10.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 24 4.10. Applications for AFI List LCAF Type ......................19
4.10.3. ASCII Names in the Mapping Database . . . . . . . . 25 4.10.1. Binding IPv4 and IPv6 Addresses ...................19
4.10.4. Using Recursive LISP Canonical Address Encodings . . 26 4.10.2. Layer 2 VPNs ......................................20
4.10.5. Compatibility Mode Use Case . . . . . . . . . . . . 27 4.10.3. ASCII Names in the Mapping Database ...............21
5. Experimental LISP Canonical Address Applications . . . . . . 28 4.10.4. Using Recursive LISP Canonical Address Encodings ..22
5.1. Convey Application Specific Data . . . . . . . . . . . . 29 4.10.5. Compatibility Mode Use Case .......................23
5.2. Generic Database Mapping Lookups . . . . . . . . . . . . 30 5. Experimental LISP Canonical Address Applications ...............24
5.3. PETR Admission Control Functionality . . . . . . . . . . 32 5.1. Convey Application-Specific Data ..........................24
5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . . 33 5.2. Generic Database Mapping Lookups ..........................25
5.5. Encoding Key/Value Address Pairs . . . . . . . . . . . . 34 5.3. PETR Admission Control Functionality ......................26
5.6. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 35 5.4. Data Model Encoding .......................................27
6. Security Considerations . . . . . . . . . . . . . . . . . . . 37 5.5. Encoding Key/Value Address Pairs ..........................28
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 38 5.6. Multiple Data-Planes ......................................29
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 39 6. Security Considerations ........................................31
8.1. Normative References . . . . . . . . . . . . . . . . . . 39 7. IANA Considerations ............................................31
8.2. Informative References . . . . . . . . . . . . . . . . . 40 8. References .....................................................32
Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 42 8.1. Normative References ......................................32
Appendix B. Document Change Log . . . . . . . . . . . . . . . . 42 8.2. Informative References ....................................33
B.1. Changes to draft-ietf-lisp-lcaf-22.txt . . . . . . . . . 42 Acknowledgments ...................................................35
B.2. Changes to draft-ietf-lisp-lcaf-21.txt . . . . . . . . . 43 Authors' Addresses ................................................36
B.3. Changes to draft-ietf-lisp-lcaf-20.txt . . . . . . . . . 43
B.4. Changes to draft-ietf-lisp-lcaf-19.txt . . . . . . . . . 43
B.5. Changes to draft-ietf-lisp-lcaf-18.txt . . . . . . . . . 43
B.6. Changes to draft-ietf-lisp-lcaf-17.txt . . . . . . . . . 43
B.7. Changes to draft-ietf-lisp-lcaf-16.txt . . . . . . . . . 43
B.8. Changes to draft-ietf-lisp-lcaf-15.txt . . . . . . . . . 44
B.9. Changes to draft-ietf-lisp-lcaf-14.txt . . . . . . . . . 44
B.10. Changes to draft-ietf-lisp-lcaf-13.txt . . . . . . . . . 44
B.11. Changes to draft-ietf-lisp-lcaf-12.txt . . . . . . . . . 44
B.12. Changes to draft-ietf-lisp-lcaf-11.txt . . . . . . . . . 44
B.13. Changes to draft-ietf-lisp-lcaf-10.txt . . . . . . . . . 44
B.14. Changes to draft-ietf-lisp-lcaf-09.txt . . . . . . . . . 45
B.15. Changes to draft-ietf-lisp-lcaf-08.txt . . . . . . . . . 45
B.16. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 45
B.17. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 45
B.18. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 45
B.19. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 45
B.20. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 46
B.21. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 46
B.22. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 46
B.23. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 46
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 46
1. Introduction 1. Introduction
The LISP architecture and protocols [RFC6830] introduces two new The LISP architecture and protocol [RFC6830] introduces two new
numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators numbering spaces: Endpoint Identifiers (EIDs) and Routing Locators
(RLOCs). To provide flexibility for current and future applications, (RLOCs). To provide flexibility for current and future applications,
these values can be encoded in LISP control messages using a general these values can be encoded in LISP control messages using a general
syntax that includes Address Family Identifier (AFI), length, and syntax that includes Address Family Identifier (AFI), length, and
value fields. value fields.
Currently defined AFIs include IPv4 and IPv6 addresses, which are Currently defined AFIs include IPv4 and IPv6 addresses, which are
formatted according to code-points assigned in [AFI] as follows: formatted according to code-points assigned in the "Address Family
Numbers" registry [AFN] as follows:
IPv4 Encoded Address: IPv4-Encoded Address:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 1 | IPv4 Address ... | | AFI = 1 | IPv4 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv4 Address | | ... IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IPv6 Encoded Address:
IPv6-Encoded Address:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 2 | IPv6 Address ... | | AFI = 2 | IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... | | ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... | | ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... | | ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address | | ... IPv6 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This document describes the currently-defined AFIs the LISP protocol This document describes the currently defined AFIs that LISP uses
uses along with their encodings and introduces the LISP Canonical along with their encodings and introduces the LISP Canonical Address
Address Format (LCAF) that can be used to define the LISP-specific Format (LCAF) that can be used to define the LISP-specific encodings
encodings for arbitrary AFI values. for arbitrary AFI values.
Specific detail uses for the LCAF types defined in this document can Specific detailed uses for the LCAF Types defined in this document
be found in the use-case documents that use them. The same LCAF type can be found in the use-case documents that implement them. The same
may be used by more than one use-case document. As an experimental LCAF Type may be used by more than one use-case document. As an
specification, this work is by definition, incomplete. The LCAF Experimental specification, this work is, by definition, incomplete.
types defined in this document are to support experimentation and
intended for cautious use in self-contained environments in support
of the corresponding use-case documents. This document provides
assignment for an initial set of approved LCAF Types (registered with
IANA) and additional unapproved LCAF Types [RFC6830]. The unapproved
LCAF encodings are defined to support further study and
experimentation.
2. Definition of Terms The LCAF Types defined in this document are to support
experimentation and are intended for cautious use in self-contained
environments in support of the corresponding use-case documents.
This document provides assignment for an initial set of approved LCAF
Types (registered with IANA) and additional unapproved LCAF Types
[RFC6830]. The unapproved LCAF encodings are defined to support
further study and experimentation.
2. Terminology
2.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2.2. Definition of Terms
Address Family Identifier (AFI): a term used to describe an address Address Family Identifier (AFI): a term used to describe an address
encoding in a packet. Address families are defined for IPv4 and encoding in a packet. Address families are defined for IPv4 and
IPv6. See [AFI] and [RFC3232] for details. The reserved AFI IPv6. See [AFN] and [RFC3232] for details. The reserved AFI
value of 0 is used in this specification to indicate an value of 0 is used in this specification to indicate an
unspecified encoded address where the length of the address is 0 unspecified encoded address where the length of the address is 0
bytes following the 16-bit AFI value of 0. bytes following the 16-bit AFI value of 0.
Unspecified Address Format: Unspecified Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 0 | <no address follows> | AFI = 0 | <no address follows>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value
used in the source and destination address fields of the first used in the source and destination address fields of the first
(most inner) LISP header of a packet. The host obtains a (most inner) LISP header of a packet. The host obtains a
destination EID the same way it obtains a destination address destination EID the same way it obtains a destination address
today, for example through a DNS lookup or SIP exchange. The today, for example, through a DNS lookup or SIP exchange. The
source EID is obtained via existing mechanisms used to set a source EID is obtained via existing mechanisms used to set a
host's "local" IP address. An EID is allocated to a host from an host's "local" IP address. An EID is allocated to a host from an
EID-prefix block associated with the site where the host is EID-prefix block associated with the site where the host is
located. An EID can be used by a host to refer to other hosts. located. An EID can be used by a host to refer to other hosts.
Routing Locator (RLOC): the IPv4 or IPv6 address of an egress Routing Locator (RLOC): the IPv4 or IPv6 address of an Egress Tunnel
tunnel router (ETR). It is the output of a EID-to-RLOC mapping Router (ETR). It is the output of an EID-to-RLOC mapping lookup.
lookup. An EID maps to one or more RLOCs. Typically, RLOCs are An EID maps to one or more RLOCs. Typically, RLOCs are numbered
numbered from topologically aggregatable blocks that are assigned from topologically aggregatable blocks that are assigned to a site
to a site at each point to which it attaches to the global at each point to which it attaches to the global Internet; where
Internet; where the topology is defined by the connectivity of the topology is defined by the connectivity of provider networks,
provider networks, RLOCs can be thought of as Provider-Assigned RLOCs can be thought of as Provider-Assigned (PA) addresses.
(PA) addresses. Multiple RLOCs can be assigned to the same ETR Multiple RLOCs can be assigned to the same ETR device or to
device or to multiple ETR devices at a site. multiple ETR devices at a site.
3. LISP Canonical Address Format Encodings 3. LISP Canonical Address Format Encodings
IANA has assigned AFI value 16387 (0x4003) to the LISP architecture IANA has assigned AFI value 16387 (0x4003) to the LISP Canonical
and protocols. This specification defines the encoding format of the Address Format (LCAF). This specification defines the encoding
LISP Canonical Address (LCA). This section defines all types for format of the LISP Canonical Address (LCA). This section defines all
which an initial allocation in the LISP-LCAF registry is requested. Types for which an initial allocation in the LISP-LCAF registry is
See IANA Considerations section for the complete list of such types. requested. See Section 7 for the complete list of such Types.
The Address Family AFI definitions from [AFI] only allocate code- The AFI definitions in [AFN] only allocate code-points for the AFI
points for the AFI value itself. The length of the address or entity value itself. The length of the address or entity that follows is
that follows is not defined and is implied based on conventional not defined and is implied based on conventional experience. When
experience. When the LISP protocol uses LCAF definitions from this LISP uses LCAF definitions from this document, the AFI-based address
document, the AFI-based address lengths are specified in this lengths are specified in this document. When new LCAF definitions
document. When new LCAF definitions are defined in other use case are defined in other use-case documents, the AFI-based address
documents, the AFI-based address lengths for any new AFI encoded lengths for any new AFI-encoded addresses are specified in those
addresses are specified in those documents. documents.
The first 6 bytes of an LISP Canonical Address are followed by a The first 6 bytes of a LISP Canonical Address are followed by a
variable number of fields of variable length: variable number of fields of variable length:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Rsvd2 | Length | | Type | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . . . | | . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST Rsvd1/Rsvd2: these 8-bit fields are reserved for future use and MUST
be transmitted as 0 and ignored on receipt. be transmitted as 0 and ignored on receipt.
Flags: this 8-bit field is for future definition and use. For now, Flags: this 8-bit field is for future definition and use. For now,
set to zero on transmission and ignored on receipt. set to zero on transmission and ignored on receipt.
Type: this 8-bit field is specific to the LISP Canonical Address Type: this 8-bit field is specific to the LISP Canonical Address
formatted encodings. Currently allocated (both approved and Format encodings. Both approved and unapproved values are listed
unapproved) values are: below. Unapproved values are indicated; see Section 5 for more
details.
Type 0: Null Body Type Type 0: Null Body
Type 1: AFI List Type Type 1: AFI List
Type 2: Instance ID Type Type 2: Instance ID
Type 3: AS Number Type Type 3: AS Number
Type 4: Application Data Type Type 4: Application Data (unapproved; see Section 5)
Type 5: Geo Coordinates Type Type 5: Geo-Coordinates
Type 6: Opaque Key Type Type 6: Opaque Key (unapproved; see Section 5)
Type 7: NAT-Traversal Type Type 7: NAT-Traversal
Type 8: Nonce Locator Type Type 8: Nonce Locator (unapproved; see Section 5)
Type 9: Multicast Info Type Type 9: Multicast Info
Type 10: Explicit Locator Path Type Type 10: Explicit Locator Path
Type 11: Security Key Type Type 11: Security Key
Type 12: Source/Dest Key Type Type 12: Source/Dest Key
Type 13: Replication List Entry Type
Type 14: JSON Data Model Type Type 13: Replication List Entry
Type 15: Key/Value Address Pair Type Type 14: JSON Data Model (unapproved; see Section 5)
Type 16: Encapsulation Format Type Type 15: Key/Value Address Pair (unapproved; see Section 5)
Type 16: Encapsulation Format (unapproved; see Section 5)
Length: this 16-bit field is in units of bytes and covers all of the Length: this 16-bit field is in units of bytes and covers all of the
LISP Canonical Address payload, starting and including the byte LISP Canonical Address payload, starting and including the byte
after the Length field. When including the AFI, an LCAF encoded after the Length field. When including the AFI, an LCAF-encoded
address will have a minimum length of 8 bytes when the Length address will have a minimum length of 8 bytes when the Length
field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1, field is 0. The 8 bytes include the AFI, Flags, Type, Rsvd1,
Rsvd2, and Length fields. When the AFI is not next to an encoded Rsvd2, and Length fields. When the AFI is not next to an encoded
address in a control message, then the encoded address will have a address in a control message, the encoded address will have a
minimum length of 6 bytes when the Length field is 0. The 6 bytes minimum length of 6 bytes when the Length field is 0. The 6 bytes
include the Flags, Type, Rsvd1, Rsvd2, and Length fields. include the Flags, Type, Rsvd1, Rsvd2, and Length fields.
[RFC6830] states RLOC records based on an IP address are sorted when [RFC6830] states RLOC-records based on an IP address are sorted when
encoded in control messages so the locator-set has consistent order encoded in control messages, so the locator-set has consistent order
across all xTRs for a given EID. The sort order is based on sort-key across all xTRs for a given EID. The sort order is based on sort-key
{afi, RLOC-address}. When an RLOC based on an IP address is LCAF {afi, RLOC-address}. When an RLOC based on an IP address is LCAF
encoded, the sort-key is {afi, LCAF-Type}. Therefore, when a locator- encoded, the sort-key is {afi, LCAF-Type}. Therefore, when a
set has a mix of AFI records and LCAF records, they are ordered from locator-set has a mix of AFI records and LCAF records, they are
smallest to largest AFI value. ordered from smallest to largest AFI value.
4. LISP Canonical Address Applications 4. LISP Canonical Address Applications
The following sections define the LCAF for the currently approved The following sections define the LCAF for the currently approved
initial set of Type values. initial set of Type values.
4.1. Segmentation using LISP 4.1. Segmentation Using LISP
When multiple organizations inside of a LISP site are using private When multiple organizations inside of a LISP site are using private
addresses [RFC1918] as EID-prefixes, their address spaces must remain addresses [RFC1918] as EID prefixes, their address spaces must remain
segregated due to possible address duplication. An Instance ID in segregated due to possible address duplication. An Instance ID in
the address encoding can aid in making the entire AFI-based address the address encoding can aid in making the entire AFI-based address
unique. unique.
Another use for the Instance ID LISP Canonical Address Format is when Another use for the Instance ID LISP Canonical Address Format is when
creating multiple segmented VPNs inside of a LISP site where keeping creating multiple segmented VPNs inside of a LISP site where keeping
EID-prefix based subnets is desirable. EID-prefix-based subnets is desirable.
Instance ID LISP Canonical Address Format: Instance ID LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | IID mask-len | Length | | Type = 2 | IID mask-len | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Instance ID | | Instance ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IID mask-len: if the AFI is set to 0, then this format is not IID mask-len: if the AFI is set to 0, then this format is not
encoding an extended EID-prefix but rather an instance-ID range encoding an extended EID prefix, but rather an Instance ID range
where the 'IID mask-len' indicates the number of high-order bits where the 'IID mask-len' indicates the number of high-order bits
used in the Instance ID field for the range. The low-order bits used in the Instance ID field for the range. The low-order bits
of the Instance ID field must be 0. of the Instance ID field must be 0.
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Instance ID: the low-order 24-bits that can go into a LISP data Instance ID: the low-order 24 bits that can go into a LISP data
header when the I-bit is set. See [RFC6830] for details. The header when the I bit is set. See [RFC6830] for details. The
reason for the length difference is so that the maximum number of reason for the length difference is so that the maximum number of
instances supported per mapping system is 2^32 while conserving instances supported per mapping system is 2^32, while conserving
space in the LISP data header. This comes at the expense of space in the LISP data header. This comes at the expense of
limiting the maximum number of instances per xTR to 2^24. If an limiting the maximum number of instances per xTR to 2^24. If an
xTR is configured with multiple instance-IDs where the value in xTR is configured with multiple Instance IDs where the value in
the high-order 8 bits are the same, then the low-order 24 bits the high-order 8 bits is the same, then the low-order 24 bits MUST
MUST be unique. be unique.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
This LISP Canonical Address Type can be used to encode either EID or This LISP Canonical Address Type can be used to encode either EID or
RLOC addresses. RLOC addresses.
Usage: When used as a lookup key, the EID is regarded as an extended- Usage: When used as a lookup key, the EID is regarded as an extended-
EID in the mapping system. This encoding is used in EID records in EID in the mapping system. This encoding is used in EID-records in
Map-Requests, Map-Replies, Map-Registers, and Map-Notify messages. Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
When LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system LISP Delegated Database Tree (LISP-DDT) [LISP-DDT] is used as the
mechanism, extended EIDs are used in Map-Referral messages. mapping system mechanism, extended EIDs are used in Map-Referral
messages.
4.2. Carrying AS Numbers in the Mapping Database 4.2. Carrying AS Numbers in the Mapping Database
When an AS number is stored in the LISP Mapping Database System for When an Autonomous System (AS) number is stored in the LISP Mapping
either policy or documentation reasons, it can be encoded in a LISP Database System for either policy or documentation reasons, it can be
Canonical Address. encoded in a LISP Canonical Address.
AS Number LISP Canonical Address Format: AS Number LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 | Rsvd2 | Length | | Type = 3 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 10, line 25 skipping to change at page 10, line 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
AS Number: the 32-bit AS number of the autonomous system that has AS Number: the 32-bit AS number of the autonomous system that has
been assigned to either the EID or RLOC that follows. been assigned to either the EID or RLOC that follows.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
The AS Number Canonical Address Type can be used to encode either EID The AS Number LCAF Type can be used to encode either EID or RLOC
or RLOC addresses. The former is used to describe the LISP-ALT AS addresses. The former is used to describe the LISP-ALT AS number the
number the EID-prefix for the site is being carried for. The latter EID prefix for the site is being carried for. The latter is used to
is used to describe the AS that is carrying RLOC based prefixes in describe the AS that is carrying RLOC based prefixes in the
the underlying routing system. underlying routing system.
Usage: This encoding can be used in EID or RLOC records in Map- Usage: This encoding can be used in EID-records or RLOC-records in
Requests, Map-Replies, Map-Registers, and Map-Notify messages. When Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
extended EIDs are used in Map-Referral messages. EIDs are used in Map-Referral messages.
4.3. Assigning Geo Coordinates to Locator Addresses 4.3. Assigning Geo-Coordinates to Locator Addresses
If an ETR desires to send a Map-Reply describing the Geo Coordinates If an ETR desires to send a Map-Reply describing the Geo-Coordinates
for each locator in its locator-set, it can use the Geo Coordinate for each locator in its locator-set, it can use the Geo-Coordinates
Type to convey physical location information. LCAF Type to convey physical location information.
Coordinates are specified using the WGS-84 (World Geodetic System) Coordinates are specified using the WGS 84 (World Geodetic System
reference coordinate system [WGS-84]. 1984) reference coordinate system [WGS-84].
Geo Coordinate LISP Canonical Address Format: Geo-Coordinates LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Rsvd2 | Length | | Type = 5 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N| Latitude Degrees | Minutes | Seconds | |N| Latitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E| Longitude Degrees | Minutes | Seconds | |E| Longitude Degrees | Minutes | Seconds |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Altitude | | Altitude |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
N: When set to 1 means North, otherwise South. N: When set to 1 means north; otherwise, south.
Latitude Degrees: Valid values range from 0 to 90 degrees above or Latitude Degrees: Valid values range from 0 to 90 degrees above or
below the equator (northern or southern hemisphere, respectively). below the equator (northern or southern hemisphere, respectively).
Latitude Minutes: Valid values range from 0 to 59. Latitude Minutes: Valid values range from 0 to 59.
Latitude Seconds: Valid values range from 0 to 59. Latitude Seconds: Valid values range from 0 to 59.
E: When set to 1 means East, otherwise West. E: When set to 1 means east; otherwise, west.
Longitude Degrees: Valid values are from 0 to 180 degrees right or Longitude Degrees: Valid values are from 0 to 180 degrees right or
left of the Prime Meridian. left of the Prime Meridian.
Longitude Minutes: Valid values range from 0 to 59. Longitude Minutes: Valid values range from 0 to 59.
Longitude Seconds: Valid values range from 0 to 59. Longitude Seconds: Valid values range from 0 to 59.
Altitude: Height relative to sea level in meters. This is a two's Altitude: Height relative to sea level in meters. This is a two's
complement signed integer meaning that the altitude could be below complement signed integer meaning that the altitude could be below
sea level. A value of 0x7fffffff indicates no Altitude value is sea level. A value of 0x7fffffff indicates no Altitude value is
encoded. encoded.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
The Geo Coordinates Canonical Address Type can be used to encode The Geo-Coordinates LCAF Type can be used to encode either EID or
either EID or RLOC addresses. When used for EID encodings, you can RLOC addresses. When used for EID encodings, you can determine the
determine the physical location of an EID along with the topological physical location of an EID along with the topological location by
location by observing the locator-set. observing the locator-set.
Usage: This encoding can be used in EID or RLOC records in Map- Usage: This encoding can be used in EID-records or RLOC-records in
Requests, Map-Replies, Map-Registers, and Map-Notify messages. When Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
extended EIDs are used in Map-Referral messages. EIDs are used in Map-Referral messages.
The use of the Geo-Coordinates LCAF encoding raises privacy issues as The use of the Geo-Coordinates LCAF encoding raises privacy issues as
location information is privacy sensitive, and possibly unexpectedly location information is privacy sensitive, and possibly unexpectedly
privacy sensitive information may be conveyed, e.g. if the location privacy-sensitive information may be conveyed, e.g., if the location
information corresponds to a router located in a person's home. information corresponds to a router located in a person's home.
Therefore, this encoding should not be used unless needed for Therefore, this encoding should not be used unless needed for
operation of a LISP deployment. Before electing to utilize this operation of a LISP deployment. Before electing to utilize this
encoding, care should be taken to ensure the appropriate policies are encoding, care should be taken to ensure the appropriate policies are
being used by the EID for controlling the conveyed information. being used by the EID for controlling the conveyed information.
4.4. NAT Traversal Scenarios 4.4. NAT Traversal Scenarios
When a LISP system is conveying global address and mapped port When a LISP system is conveying global-address and mapped-port
information when traversing through a NAT device, the NAT-Traversal information when traversing through a NAT device, the NAT-Traversal
LCAF Type is used. See [I-D.ermagan-lisp-nat-traversal] for details. LCAF Type is used. See [NAT-LISP] for details.
NAT-Traversal Canonical Address Format: NAT-Traversal Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 7 | Rsvd2 | Length | | Type = 7 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 13, line 40 skipping to change at page 12, line 34
| AFI = x | RTR RLOC Address k ... | | AFI = x | RTR RLOC Address k ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
MS UDP Port Number: this is the UDP port number of the Map-Server MS UDP Port Number: this is the UDP port number of the Map-Server
and is set to 4342. and is set to 4342.
ETR UDP Port Number: this is the port number returned to a LISP ETR UDP Port Number: this is the port number returned to a LISP
system which was copied from the source port from a packet that system that was copied from the source port from a packet that has
has flowed through a NAT device. flowed through a NAT device.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
Global ETR RLOC Address: this is an address known to be globally Global ETR RLOC Address: this is an address known to be globally
unique built by NAT-traversal functionality in a LISP router. unique built by NAT-traversal functionality in a LISP router.
MS RLOC Address: this is the address of the Map-Server used in the MS RLOC Address: this is the address of the Map-Server used in the
destination RLOC of a packet that has flowed through a NAT device. destination RLOC of a packet that has flowed through a NAT device.
Private ETR RLOC Address: this is an address known to be a private Private ETR RLOC Address: this is an address known to be a private
address inserted in this LCAF by a LISP router that resides on the address inserted in this LCAF by a LISP router that resides on the
private side of a NAT device. private side of a NAT device.
RTR RLOC Address: this is an encapsulation address used by an ITR or RTR RLOC Address: this is an encapsulation address used by an
PITR which resides behind a NAT device. This address is known to Ingress Tunnel Router (ITR) or Proxy Ingress Tunnel Router (PITR)
have state in a NAT device so packets can flow from it to the LISP that resides behind a NAT device. This address is known to have
ETR behind the NAT. There can be one or more NAT Reencapsulating state in a NAT device so packets can flow from it to the LISP ETR
Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] addresses behind the NAT. There can be one or more NAT Re-encapsulating
supplied in these set of fields. The number of RTRs encoded is Tunnel Router (RTR) [NAT-LISP] addresses supplied in these set of
determined by parsing each field. When there are no RTRs fields. The number of RTRs encoded is determined by parsing each
supplied, the RTR fields can be omitted and reflected by the LCAF field. When there are no RTRs supplied, the RTR fields can be
length field or an AFI of 0 can be used to indicate zero RTRs omitted and reflected by the LCAF length field or an AFI of 0 can
encoded. be used to indicate zero RTRs encoded.
Usage: This encoding can be used in Info-Request and Info-Reply Usage: This encoding can be used in Info-Request and Info-Reply
messages. The mapping system does not store this information. The messages. The mapping system does not store this information. The
information is used by an xTR and Map-Server to convey private and information is used by an xTR and Map-Server to convey private and
public address information when traversing NAT and firewall devices. public address information when traversing NAT and firewall devices.
Care should be taken to protect privacy against the adverse use of a Care should be taken to protect privacy against the adverse use of a
Global or Private ETR RLOC Address by ensuring policy controls are Global or Private ETR RLOC Address by ensuring policy controls are
used during EID registrations that use this LCAF Type in RLOC- used during EID registrations that use this LCAF Type in RLOC-
records. Refer to the use case documents for additional information. records. Refer to the use-case documents for additional information.
4.5. Multicast Group Membership Information 4.5. Multicast Group Membership Information
Multicast group information can be published in the mapping database. Multicast group information can be published in the mapping database.
So a lookup on a group address EID can return a replication list of So a lookup on a group address EID can return a replication list of
RLOC group addresses or RLOC unicast addresses. The intent of this RLOC group addresses or RLOC unicast addresses. The intent of this
type of unicast replication is to deliver packets to multiple ETRs at type of unicast replication is to deliver packets to multiple ETRs at
receiver LISP multicast sites. The locator-set encoding for this EID receiver LISP multicast sites. The locator-set encoding for this
record type can be a list of ETRs when they each register with "Merge EID-record Type can be a list of ETRs when they each register with
Semantics". The encoding can be a typical AFI-encoded locator "Merge Semantics". The encoding can be a typical AFI-encoded locator
address. When an RTR list is being registered (with multiple levels address. When an RTR list is being registered (with multiple levels
according to [I-D.coras-lisp-re]), the Replication List Entry LCAF according to [LISP-RE]), the Replication List Entry LCAF Type is used
type is used for locator encoding. for locator encoding.
This LCAF encoding can be used to send broadcast packets to all This LCAF encoding can be used to send broadcast packets to all
members of a subnet when an EID is away from its home subnet members of a subnet when an EID is away from its home subnet
location. location.
Multicast Info Canonical Address Format: Multicast Info Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 9 | Rsvd2 | Length | | Type = 9 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Instance-ID | | Instance ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Source MaskLen| Group MaskLen | | Reserved | Source MaskLen| Group MaskLen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Source/Subnet Address ... | | AFI = x | Source/Subnet Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Group Address ... | | AFI = x | Group Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Reserved: must be set to zero and ignored on receipt. Reserved: must be set to zero and ignored on receipt.
Instance ID: the low-order 24-bits that can go into a LISP data Instance ID: the low-order 24 bits that can go into a LISP data
header when the I-bit is set. See [RFC6830] for details. The use header when the I bit is set. See [RFC6830] for details. The use
of the Instance-ID in this LCAF type is to associate a multicast of the Instance ID in this LCAF Type is to associate a multicast
forwarding entry for a given VPN. The instance-ID describes the forwarding entry for a given VPN. The Instance ID describes the
VPN and is registered to the mapping database system as a 3-tuple VPN and is registered to the mapping database system as a 3-tuple
of (Instance-ID, S-prefix, G-prefix). of (Instance ID, S-prefix, G-prefix).
Source MaskLen: the mask length of the source prefix that follows. Source MaskLen: the mask length of the source prefix that follows.
The length is the number of high-order mask bits set. The length is the number of high-order mask bits set.
Group MaskLen: the mask length of the group prefix that follows. Group MaskLen: the mask length of the group prefix that follows.
The length is the number of high-order mask bits set. The length is the number of high-order mask bits set.
AFI = x: x can be any AFI value from [AFI]. When a specific address AFI = x: x can be any AFI value from [AFN]. When a specific address
family has a multicast address semantic, this field must be either family has a multicast address semantic, this field must be either
a group address or a broadcast address. a group address or a broadcast address.
Source/Subnet Address: is the source address or prefix for encoding Source/Subnet Address: the source address or prefix for encoding an
a (S,G) multicast entry. (S,G) multicast entry.
Group Address: is the group address or group prefix for encoding Group Address: the group address or group prefix for encoding (S,G)
(S,G) or (*,G) multicast entries. or (*,G) multicast entries.
Usage: This encoding can be used in EID records in Map-Requests, Map- Usage: This encoding can be used in EID-records in Map-Request, Map-
Replies, Map-Registers, and Map-Notify messages. When LISP-DDT Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
EIDs are used in Map-Referral messages. used in Map-Referral messages.
4.6. Traffic Engineering using Re-encapsulating Tunnels 4.6. Traffic Engineering Using Re-encapsulating Tunnels
For a given EID lookup into the mapping database, this LCAF can be For a given EID lookup into the mapping database, this LCAF can be
returned to provide a list of locators in an explicit re- returned to provide a list of locators in an explicit
encapsulation path. See [I-D.farinacci-lisp-te] for details. re-encapsulation path. See [LISP-TE] for details.
Explicit Locator Path (ELP) Canonical Address Format: Explicit Locator Path (ELP) Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 10 | Rsvd2 | Length | | Type = 10 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 17, line 36 skipping to change at page 15, line 41
| Reencap Hop k ... | | Reencap Hop k ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Rsvd3: this field is reserved for future use and MUST be transmitted Rsvd3: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt. as 0 and ignored on receipt.
Lookup bit (L): this is the Lookup bit used to indicate to the user Lookup bit (L): this is the Lookup bit used to indicate to the user
of the ELP to not use this address for encapsulation but to look of the ELP not to use this address for encapsulation but to look
it up in the mapping database system to obtain an encapsulating it up in the mapping database system to obtain an encapsulating
RLOC address. RLOC address.
RLOC-Probe bit (P): this is the RLOC-probe bit which means the RLOC Probe bit (P): this is the RLOC Probe bit that means the
Reencap Hop allows RLOC-probe messages to be sent to it. When the Reencap Hop allows RLOC-probe messages to be sent to it. When the
R-bit is set to 0, RLOC-probes must not be sent. When a Reencap R bit is set to 0, RLOC-probes must not be sent. When a Reencap
Hop is an anycast address then multiple physical Reencap Hops are Hop is an anycast address then multiple physical Reencap Hops are
using the same RLOC address. In this case, RLOC-probes are not using the same RLOC address. In this case, RLOC-probes are not
needed because when the closest RLOC address is not reachable needed because when the closest RLOC address is not reachable,
another RLOC address can be reachable. another RLOC address can be reachable.
Strict bit (S): this is the strict bit which means the associated Strict bit (S): this is the Strict bit, which means the associated
Reencap Hop is required to be used. If this bit is 0, the Reencap Hop is required to be used. If this bit is 0, the
reencapsulator can skip this Reencap Hop and go to the next one in re-encapsulator can skip this Reencap Hop and go to the next one
the list. in the list.
AFI = x: x can be any AFI value from [AFI]. When a specific AFI has AFI = x: x can be any AFI value from [AFN]. When a specific AFI has
its own encoding of a multicast address, this field must be either its own encoding of a multicast address, this field must be either
a group address or a broadcast address. a group address or a broadcast address.
Usage: This encoding can be used in RLOC records in Map-Requests, Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Map-Replies, Map-Registers, and Map-Notify messages. This encoding Reply, Map-Register, and Map-Notify messages. This encoding does not
does not need to be understood by the mapping system for mapping need to be understood by the mapping system for mapping database
database lookups since this LCAF type is not a lookup key. lookups, since this LCAF Type is not a lookup key.
4.7. Storing Security Data in the Mapping Database 4.7. Storing Security Data in the Mapping Database
When a locator in a locator-set has a security key associated with When a locator in a locator-set has a security key associated with
it, this LCAF will be used to encode key material. See it, this LCAF will be used to encode key material. See [LISP-DDT]
[I-D.ietf-lisp-ddt] for details. for details.
Security Key Canonical Address Format: Security Key Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 11 | Rsvd2 | Length | | Type = 11 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 19, line 27 skipping to change at page 16, line 47
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... Key Material | | ... Key Material |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Locator Address ... | | AFI = x | Locator Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Key Count: the Key Count field declares the number of Key sections Key Count: the Key Count field declares the number of Key sections
included in this LCAF. A key section is made up of "Key Length" included in this LCAF. A Key section is made up of Key Length and
and "Key Material" fields. Key Material fields.
Rsvd3: this field is reserved for future use and MUST be transmitted Rsvd3: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt. as 0 and ignored on receipt.
Key Algorithm: the Algorithm field identifies the key's Key Algorithm: the Key Algorithm field identifies the key's
cryptographic algorithm and specifies the format of the Public Key cryptographic algorithm and specifies the format of the Public Key
field. Refer to the [I-D.ietf-lisp-ddt] and field. Refer to the [LISP-DDT] and [RFC8061] use cases for
[I-D.ietf-lisp-crypto] use cases for definitions of this field. definitions of this field.
Rsvd4: this field is reserved for future use and MUST be transmitted Rsvd4: this field is reserved for future use and MUST be transmitted
as 0 and ignored on receipt. as 0 and ignored on receipt.
R bit: this is the revoke bit and, if set, it specifies that this R bit: this is the Revoke bit and, if set, it specifies that this
Key is being Revoked. key is being revoked.
Key Length: this field determines the length in bytes of the Key Key Length: this field determines the length in bytes of the Key
Material field. Material field.
Key Material: the Key Material field stores the key material. The Key Material: the Key Material field stores the key material. The
format of the key material stored depends on the Key Algorithm format of the key material stored depends on the Key Algorithm
field. field.
AFI = x: x can be any AFI value from [AFI]. This is the locator AFI = x: x can be any AFI value from [AFN]. This is the locator
address that owns the encoded security key. address that owns the encoded security key.
Usage: This encoding can be used in EID or RLOC records in Map- Usage: This encoding can be used in EID-records or RLOC-records in
Requests, Map-Replies, Map-Registers, and Map-Notify messages. When Map-Request, Map-Reply, Map-Register, and Map-Notify messages. When
LISP-DDT [I-D.ietf-lisp-ddt] is used as the mapping system mechanism, LISP-DDT [LISP-DDT] is used as the mapping system mechanism, extended
extended EIDs are used in Map-Referral messages. EIDs are used in Map-Referral messages.
4.8. Source/Destination 2-Tuple Lookups 4.8. Source/Destination 2-Tuple Lookups
When both a source and destination address of a flow need When both a source and destination address of a flow need
consideration for different locator-sets, this 2-tuple key is used in consideration for different locator-sets, this 2-tuple key is used in
EID fields in LISP control messages. When the Source/Dest key is EID fields in LISP control messages. When the Source/Dest key is
registered to the mapping database, it can be encoded as a source- registered to the mapping database, it can be encoded as a source-
prefix and destination-prefix. When the Source/Dest is used as a key prefix and destination-prefix. When the Source/Dest is used as a key
for a mapping database lookup the source and destination come from a for a mapping database lookup, the source and destination come from a
data packet. data packet.
Source/Dest Key Canonical Address Format: Source/Dest Key Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 12 | Rsvd2 | Length | | Type = 12 | Rsvd2 | Length |
skipping to change at page 21, line 24 skipping to change at page 18, line 24
| Reserved | Source-ML | Dest-ML | | Reserved | Source-ML | Dest-ML |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Source-Prefix ... | | AFI = x | Source-Prefix ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = y | Destination-Prefix ... | | AFI = y | Destination-Prefix ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Reserved: must be set to zero and ignore on receipt. Reserved: must be set to zero and ignored on receipt.
Source-ML: the mask length of the source prefix that follows. The Source-ML: the mask length of the source prefix that follows. The
length is the number of high-order mask bits set. length is the number of high-order mask bits set.
Dest-ML: the mask length of the destination prefix that follows. Dest-ML: the mask length of the destination prefix that follows.
The length is the number of high-order mask bits set. The length is the number of high-order mask bits set.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
AFI = y: y can be any AFI value from [AFI]. When a specific address AFI = y: y can be any AFI value from [AFN]. When a specific address
family has a multicast address semantic, this field must be either family has a multicast address semantic, this field must be either
a group address or a broadcast address. a group address or a broadcast address.
Usage: This encoding can be used in EID records in Map-Requests, Map- Usage: This encoding can be used in EID-records in Map-Request, Map-
Replies, Map-Registers, and Map-Notify messages. When LISP-DDT Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
EIDs are used in Map-Referral messages. Refer to used in Map-Referral messages. Refer to [LISP-TE] for usage details
[I-D.farinacci-lisp-te] for usage details of this LCAF type. of this LCAF Type.
4.9. Replication List Entries for Multicast Forwarding 4.9. Replication List Entries for Multicast Forwarding
The Replication List Entry LCAF type is an encoding for a locator The Replication List Entry LCAF Type is an encoding for a locator
being used for unicast replication according to the specification in being used for unicast replication according to the specification in
[I-D.coras-lisp-re]. This locator encoding is pointed to by a [LISP-RE]. This locator encoding is pointed to by a Multicast Info
Multicast Info LCAF Type and is registered by Re-encapsulating Tunnel LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs)
Routers (RTRs) that are participating in an overlay distribution that are participating in an overlay distribution tree. Each RTR
tree. Each RTR will register its locator address and its configured will register its locator address and its configured level in the
level in the distribution tree. distribution tree.
Replication List Entry Address Format: Replication List Entry Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 13 | Rsvd2 | Length | | Type = 13 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 | Rsvd4 | Level Value | | Rsvd3 | Rsvd4 | Level Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR/ETR #1 ... | | AFI = x | RTR/ETR #1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rsvd3 | Rsvd4 | Level Value | | Rsvd3 | Rsvd4 | Level Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | RTR/ETR #n ... | | AFI = x | RTR/ETR #n ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Rsvd3/Rsvd4: must be set to zero and ignore on receipt. Rsvd3/Rsvd4: must be set to zero and ignored on receipt.
Level Value: this value is associated with the level within the Level Value: this value is associated with the level within the
overlay distribution tree hierarchy where the RTR resides. The overlay distribution tree hierarchy where the RTR resides. The
level numbers are ordered from lowest value being close to the ITR level numbers are ordered from lowest value being close to the ITR
(meaning that ITRs replicate to level-0 RTRs) and higher levels (meaning that ITRs replicate to level-0 RTRs) and higher levels
are further downstream on the distribution tree closer to ETRs of are further downstream on the distribution tree closer to ETRs of
multicast receiver sites. multicast receiver sites.
AFI = x: x can be any AFI value from [AFI]. A specific AFI has its AFI = x: x can be any AFI value from [AFN]. A specific AFI has its
own encoding of either a unicast or multicast locator address. own encoding of either a unicast or multicast locator address.
For efficiency reasons, all RTR/ETR entries for the same level For efficiency reasons, all RTR/ETR entries for the same level
should be combined together by a Map-Server to avoid searching should be combined by a Map-Server to avoid searching through the
through the entire multi-level list of locator entries in a Map- entire multilevel list of locator entries in a Map-Reply message.
Reply message.
Usage: This encoding can be used in RLOC records in Map-Requests, Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Map-Replies, Map-Registers, and Map-Notify messages. Reply, Map-Register, and Map-Notify messages.
4.10. Applications for AFI List Type 4.10. Applications for AFI List LCAF Type
4.10.1. Binding IPv4 and IPv6 Addresses 4.10.1. Binding IPv4 and IPv6 Addresses
When header translation between IPv4 and IPv6 is desirable a LISP When header translation between IPv4 and IPv6 is desirable, a LISP
Canonical Address can use the AFI List Type to carry a variable Canonical Address can use the AFI List LCAF Type to carry a variable
number of AFIs in one LCAF AFI. number of AFIs in one LCAF AFI.
Address Binding LISP Canonical Address Format: Address Binding LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length | | Type = 1 | Rsvd2 | Length |
skipping to change at page 23, line 42 skipping to change at page 20, line 31
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address ... | | ... IPv6 Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv6 Address | | ... IPv6 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
This type of address format can be included in a Map-Request when the This type of address format can be included in a Map-Request when the
address is being used as an EID, but the Mapping Database System address is being used as an EID, but the LISP Mapping Database System
lookup destination can use only the IPv4 address. This is so a lookup destination can use only the IPv4 address. This is so a
Mapping Database Service Transport System, such as LISP-ALT Mapping Database Service Transport System, such as LISP-ALT
[RFC6836], can use the Map-Request destination address to route the [RFC6836], can use the Map-Request destination address to route the
control message to the desired LISP site. control message to the desired LISP site.
Usage: This encoding can be used in EID or RLOC records in Map- Usage: This encoding can be used in EID-records or RLOC-records in
Requests, Map-Replies, Map-Registers, and Map-Notify messages. See Map-Request, Map-Reply, Map-Register, and Map-Notify messages. See
subsections in this section for specific use cases. the other subsections in this section for specific use cases.
4.10.2. Layer-2 VPNs 4.10.2. Layer 2 VPNs
When MAC addresses are stored in the LISP Mapping Database System, When Media Access Control (MAC) addresses are stored in the LISP
the AFI List Type can be used to carry AFI 6. Mapping Database System, the AFI List LCAF Type can be used to carry
AFI 6.
MAC Address LISP Canonical Address Format: MAC Address LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length | | Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 6 | Layer-2 MAC Address ... | | AFI = 6 | Layer 2 MAC Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... Layer-2 MAC Address | | ... Layer 2 MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
This address format can be used to connect layer-2 domains together This address format can be used to connect Layer 2 domains together
using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. using LISP over an IPv4 or IPv6 core network to create a Layer 2 VPN.
In this use case, a MAC address is being used as an EID, and the In this use case, a MAC address is being used as an EID, and the
locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or locator-set that this EID maps to can be an IPv4 or IPv6 RLOC, or
even another MAC address being used as an RLOC. See even another MAC address being used as an RLOC. See [EID-MOBILITY]
[I-D.portoles-lisp-eid-mobility] for how layer-2 VPNs operate when for how Layer 2 VPNs operate when doing EID mobility.
doing EID mobility.
Care should be taken to protect privacy against the adverse use of a Care should be taken to protect privacy against the adverse use of a
Layer-2 MAC Address by ensuring policy controls are used during EID Layer 2 MAC address by ensuring policy controls are used during EID
registrations that use AFI=6 encodings in RLOC-records. Refer to the registrations that use AFI=6 encodings in RLOC-records. Refer to the
use case documents for additional information. use-case documents for additional information.
4.10.3. ASCII Names in the Mapping Database 4.10.3. ASCII Names in the Mapping Database
If DNS names [RFC1035] or URIs [RFC3986] are stored in the LISP If DNS names [RFC1035] or URIs [RFC3986] are stored in the LISP
Mapping Database System, the AFI List Type can be used to carry an Mapping Database System, the AFI List LCAF Type can be used to carry
ASCII string. an ASCII string.
ASCII LISP Canonical Address Format: ASCII LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length | | Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 25, line 22 skipping to change at page 22, line 4
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length | | Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 17 | DNS Name or URI ... | | AFI = 17 | DNS Name or URI ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
An example for using DNS names is when an ETR registers a mapping An example for using DNS names is when an ETR registers a mapping
with an EID-record encoded as (AFI=1, 10.0.0.0/8) with a RLOC-record with an EID-record encoded as (AFI=1, 10.0.0.0/8) with an RLOC-record
(AFI=17, "router.abc.com"). (AFI=17, "router.abc.com").
4.10.4. Using Recursive LISP Canonical Address Encodings 4.10.4. Using Recursive LISP Canonical Address Encodings
When any combination of above is desirable, the AFI List Type value When any combination of above is desirable, the AFI List LCAF Type
can be used to carry within the LCAF AFI another LCAF AFI (for value can be used to carry within the LCAF AFI another LCAF AFI (for
example, Application Specific Data see Section 5.1. example, Application-Specific Data in Section 5.1).
Recursive LISP Canonical Address Format: Recursive LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Rsvd2 | Length | | Type = 1 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 26, line 41 skipping to change at page 22, line 47
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... IPv4 Address | | ... IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Length2: length in bytes starting and including the byte after this Length2: length in bytes starting and including the byte after this
Length2 field. Length2 field.
This format could be used by a Mapping Database Transport System, This format could be used by a Mapping Database Service Transport
such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as System, such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is
an EID and placed in the Map-Request destination address by the used as an EID and placed in the Map-Request destination address by
sending LISP system. The ALT system can deliver the Map-Request to the sending LISP system. The ALT system can deliver the Map-Request
the LISP destination site independent of the Application Data Type to the LISP destination site independent of the Application Data LCAF
AFI payload values. When this AFI is processed by the destination Type AFI payload values. When this AFI is processed by the
LISP site, it can return different locator-sets based on the type of destination LISP site, it can return different locator-sets based on
application or level of service that is being requested. the type of application or level of service that is being requested.
4.10.5. Compatibility Mode Use Case 4.10.5. Compatibility Mode Use Case
A LISP system should use the AFI List Type format when sending to A LISP system should use the AFI List LCAF Type format when sending
LISP systems that do not support a particular LCAF Type used to to LISP systems that do not support a particular LCAF Type used to
encode locators. This allows the receiving system to be able to encode locators. This allows the receiving system to be able to
parse a locator address for encapsulation purposes. The list of AFIs parse a locator address for encapsulation purposes. The list of AFIs
in an AFI List LCAF Type has no semantic ordering and a receiver in an AFI List LCAF Type has no semantic ordering and a receiver
should parse each AFI element no matter what the ordering. should parse each AFI element no matter what the ordering.
Compatibility Mode Address Format: Compatibility Mode Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 27, line 44 skipping to change at page 23, line 47
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Address | | IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Length2: length in bytes starting and including the byte after this Length2: length in bytes starting and including the byte after this
Length2 field. Length2 field.
If a system does not recognized the Geo Coordinate LCAF Type that is If a system does not recognized the Geo-Coordinates LCAF Type that is
accompanying a locator address, an encoder can include the Geo accompanying a locator address, an encoder can include the Geo-
Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI Coordinates LCAF Type embedded in an AFI List LCAF Type where the AFI
in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in in the Geo-Coordinates LCAF Type is set to 0 and the AFI encoded next
the list is encoded with a valid AFI value to identify the locator in the list is encoded with a valid AFI value to identify the locator
address. address.
A LISP system is required to support the AFI List LCAF Type to use A LISP system is required to support the AFI List LCAF Type to use
this procedure. It would skip over 10 bytes of the Geo Coordinate this procedure. It would skip over 10 bytes of the Geo-Coordinates
LCAF Type to get to the locator address encoding (an IPv4 locator LCAF Type to get to the locator address encoding (an IPv4 locator
address). A LISP system that does support the Geo Coordinate LCAF address). A LISP system that does support the Geo-Coordinates LCAF
Type can support parsing the locator address within the Geo Type can support parsing the locator address within the Geo-
Coordinate LCAF encoding or in the locator encoding that follows in Coordinates LCAF Type encoding or in the locator encoding that
the AFI List LCAF. follows in the AFI List LCAF Type.
5. Experimental LISP Canonical Address Applications 5. Experimental LISP Canonical Address Applications
The following sections describe experimental LCAF encodings. These The following sections describe experimental LCAF encodings. These
LCAF Types are not approved (registered with IANA). The inclusion of LCAF Types are not approved (i.e., not registered with IANA). The
these encodings in this document are in support of further study and inclusion of these encodings in this document is in support of
experimentation to determine whether these encodings are functional, further study and experimentation to determine whether these
if there is a demand for these use cases, and better understand encodings are functional, if there is a demand for these use cases,
deployment considerations. As noted previously, these LCAF Types are and to better understand deployment considerations. As noted
restricted to cautious use in self-contained environments in support previously, these LCAF Types are restricted to cautious use in self-
of the corresponding use-case documents. contained environments in support of the corresponding use-case
documents.
5.1. Convey Application Specific Data 5.1. Convey Application-Specific Data
When a locator-set needs to be conveyed based on the type of When a locator-set needs to be conveyed based on the type of
application or the Per-Hop Behavior (PHB) of a packet, the application or the Per-Hop Behavior (PHB) of a packet, the
Application Data Type can be used. Application Data LCAF Type can be used.
Application Data LISP Canonical Address Format: Application Data LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Rsvd2 | Length | | Type = 4 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 29, line 28 skipping to change at page 25, line 4
| Type = 4 | Rsvd2 | Length | | Type = 4 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP TOS, IPv6 TC, or Flow Label | Protocol | | IP TOS, IPv6 TC, or Flow Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local Port (lower-range) | Local Port (upper-range) | | Local Port (lower-range) | Local Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote Port (lower-range) | Remote Port (upper-range) | | Remote Port (lower-range) | Remote Port (upper-range) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS
field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow
Label used in an IPv6 header. Label used in an IPv6 header.
Local Port/Remote Port Ranges: these fields are from the TCP, UDP, Local Port/Remote Port Ranges: these fields are from the TCP, UDP,
or SCTP transport header. A range can be specified by using a or Stream Control Transmission Protocol (SCTP) transport header.
lower value and an upper value. When a single port is encoded, A range can be specified by using a lower value and an upper
the lower and upper value fields are the same. value. When a single port is encoded, the lower and upper value
fields are the same.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
The Application Data Canonical Address Type is used for an EID The Application Data LCAF Type is used for an EID encoding when an
encoding when an ITR wants a locator-set for a specific application. ITR wants a locator-set for a specific application. When used for an
When used for an RLOC encoding, the ETR is supplying a locator-set RLOC encoding, the ETR is supplying a locator-set for each specific
for each specific application is has been configured to advertise. application is has been configured to advertise.
Usage: This encoding can be used in EID records in Map-Requests, Map- Usage: This encoding can be used in EID-records in Map-Request, Map-
Replies, Map-Registers, and Map-Notify messages. When LISP-DDT Reply, Map-Register, and Map-Notify messages. When LISP-DDT
[I-D.ietf-lisp-ddt] is used as the mapping system mechanism, extended [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
EIDs are used in Map-Referral messages. This LCAF type is used as a used in Map-Referral messages. This LCAF Type is used as a lookup
lookup key to the mapping system that can return a longest-match or key to the mapping system that can return a longest-match or exact-
exact-match entry. match entry.
5.2. Generic Database Mapping Lookups 5.2. Generic Database Mapping Lookups
When the LISP Mapping Database system holds information accessed by a When the LISP Mapping Database System holds information accessed by a
generic formatted key (where the key is not the usual IPv4 or IPv6 generic formatted key (where the key is not the usual IPv4 or IPv6
address), an opaque key may be desirable. address), an opaque key may be desirable.
Opaque Key LISP Canonical Address Format: Opaque Key LISP Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 30, line 26 skipping to change at page 26, line 4
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 6 | Rsvd2 | Length | | Type = 6 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Field Num | Key Wildcard Fields | Key . . . | | Key Field Num | Key Wildcard Fields | Key . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . . . Key | | . . . Key |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Key Field Num: the value of this field is the number of "Key" sub- Key Field Num: the value of this field is the number of "Key" sub-
fields minus 1, the "Key" field can be broken up into. So if this fields minus 1, the Key field can be broken up into. So, if this
field has a value of 0, there is 1 sub-field in the "Key". The field has a value of 0, there is one sub-field in the "Key". The
width of the sub-fields are fixed length. So for a key size of 8 width of the sub-fields are fixed length. So, for a key size of 8
bytes, with a Key Field Num of 3, allows 4 sub-fields of 2 bytes bytes, with a Key Field Num of 3, four sub-fields of 2 bytes each
each in length. Allowing for a reasonable number of 16 sub-field in length are allowed. Allowing for a reasonable number of 16
separators, valid values range from 0 to 15. sub-field separators, valid values range from 0 to 15.
Key Wildcard Fields: describes which fields in the key are not used Key Wildcard Fields: describes which fields in the key are not used
as part of the key lookup. This wildcard encoding is a bitfield. as part of the key lookup. This wildcard encoding is a bitfield.
Each bit is a don't-care bit for a corresponding field in the key. Each bit is a don't-care bit for a corresponding field in the key.
Bit 0 (the low-order bit) in this bitfield corresponds the first Bit 0 (the low-order bit) in this bitfield corresponds the first
field, the low-order field in the key, bit 1 the second field, and field, the low-order field in the key, bit 1 the second field, and
so on. When a bit is set in the bitfield it is a don't-care bit so on. When a bit is set in the bitfield, it is a don't-care bit
and should not be considered as part of the database lookup. When and should not be considered as part of the database lookup. When
the entire 16-bits is set to 0, then all bits of the key are used the entire 16 bits are set to 0, then all bits of the key are used
for the database lookup. for the database lookup.
Key: the variable length key used to do a LISP Database Mapping Key: the variable length key used to do a LISP Mapping Database
lookup. The length of the key is the value n (as shown above). System lookup. The length of the key is the value n (as shown
above).
Usage: This is an experimental type where the usage has not been Usage: This is an experimental Type where the usage has not yet been
defined yet. defined.
5.3. PETR Admission Control Functionality 5.3. PETR Admission Control Functionality
When a public PETR device wants to verify who is encapsulating to it, When a public Proxy Egress Tunnel Router (PETR) device wants to
it can check for a specific nonce value in the LISP encapsulated verify who is encapsulating to it, it can check for a specific nonce
packet. To convey the nonce to admitted ITRs or PITRs, this LCAF is value in the LISP-encapsulated packet. To convey the nonce to
used in a Map-Register or Map-Reply locator-record. admitted ITRs or PITRs, this LCAF is used in a Map-Register or Map-
Reply locator-record.
Nonce Locator Canonical Address Format: Nonce Locator Canonical Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 8 | Rsvd2 | Length | | Type = 8 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Nonce | | Reserved | Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Reserved: must be set to zero and ignore on receipt. Reserved: must be set to zero and ignored on receipt.
Nonce: this is a nonce value returned by an ETR in a Map-Reply Nonce: a nonce value returned by an ETR in a Map-Reply locator-
locator-record to be used by an ITR or PITR when encapsulating to record to be used by an ITR or PITR when encapsulating to the
the locator address encoded in the AFI field of this LCAF type. locator address encoded in the AFI field of this LCAF Type. This
This nonce value is inserted in the nonce field in the LISP header nonce value is inserted in the nonce field in the LISP header
encapsulation. encapsulation.
AFI = x: x can be any AFI value from [AFI]. AFI = x: x can be any AFI value from [AFN].
Usage: This is an experimental type where the usage has not been Usage: This is an experimental Type where the usage has not yet been
defined yet. defined.
5.4. Data Model Encoding 5.4. Data Model Encoding
This type allows a JSON data model to be encoded either as an EID or This Type allows a JSON data model to be encoded as either an EID or
RLOC. an RLOC.
JSON Data Model Type Address Format: JSON Data Model Type Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 14 | Rsvd2 |B| Length | | Type = 14 | Rsvd2 |B| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 33, line 23 skipping to change at page 28, line 4
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 14 | Rsvd2 |B| Length | | Type = 14 | Rsvd2 |B| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| JSON length | JSON binary/text encoding ... | | JSON length | JSON binary/text encoding ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Optional Address ... | | AFI = x | Optional Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
B bit: indicates that the JSON field is binary encoded according to B bit: indicates that the JSON field is binary encoded according to
[JSON-BINARY] when the bit is set to 1. Otherwise the encoding is [JSON-BINARY] when the bit is set to 1. Otherwise, the encoding
based on text encoding according to [RFC7159]. is based on text encoding according to [RFC7159].
JSON length: length in octets of the following 'JSON binary/text JSON length: length in octets of the following JSON binary/text
encoding' field. encoding field.
JSON binary/text encoding field: a variable length field that JSON binary/text encoding: a variable-length field that contains
contains either binary or text encodings. either binary or text encodings.
AFI = x: x can be any AFI value from [AFI]. A specific AFI has its AFI = x: x can be any AFI value from [AFN]. A specific AFI has its
own encoding of either a unicast or multicast locator address. own encoding of either a unicast or multicast locator address.
All RTR/ETR entries for the same level should be combined together All RTR/ETR entries for the same level should be combined by a
by a Map-Server to avoid searching through the entire multi-level Map-Server to avoid searching through the entire multilevel list
list of locator entries in a Map-Reply message. of locator entries in a Map-Reply message.
Usage: This is an experimental type where the usage has not been Usage: This is an experimental Type where the usage has not yet been
defined yet. An example mapping is an EID-record encoded as a defined. An example mapping is an EID-record encoded as a
distinguished-name "cpe-rotuer" and a RLOC-record encoded as a JSON distinguished-name "cpe-router" and an RLOC-record encoded as a JSON
string "{ "router-address" : "1.1.1.1", "router-mask" : "8" }". string "{ "router-address" : "1.1.1.1", "router-mask" : "8" }".
5.5. Encoding Key/Value Address Pairs 5.5. Encoding Key/Value Address Pairs
The Key/Value pair is, for example, useful for attaching attributes The Key/Value pair is, for example, useful for attaching attributes
to other elements of LISP packets, such as EIDs or RLOCs. When to other elements of LISP packets, such as EIDs or RLOCs. When
attaching attributes to EIDs or RLOCs, it's necessary to distinguish attaching attributes to EIDs or RLOCs, it's necessary to distinguish
between the element that should be used as EID or RLOC, and hence as between the element that should be used as EID or RLOC and, hence, as
the key for lookups, and additional attributes. This is especially the key for lookups and additional attributes. This is especially
the case when the difference cannot be determined from the types of the case when the difference cannot be determined from the Types of
the elements, such as when two IP addresses are being used. the elements, such as when two IP addresses are being used.
Key/Value Pair Address Format: Key/Value Address Pair Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 15 | Rsvd2 | Length | | Type = 15 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address as Key ... | | AFI = x | Address as Key ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 34, line 28 skipping to change at page 29, line 4
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 15 | Rsvd2 | Length | | Type = 15 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = x | Address as Key ... | | AFI = x | Address as Key ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = y | Address as Value ... | | AFI = y | Address as Value ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
AFI = x: x is the "Address as Key" AFI that can have any value from AFI = x: x is the "Address as Key" AFI that can have any value from
[AFI]. A specific AFI has its own encoding of either a unicast or [AFN]. A specific AFI has its own encoding of either a unicast or
multicast locator address. All RTR/ETR entries for the same level a multicast locator address. All RTR/ETR entries for the same
should be combined together by a Map-Server to avoid searching level should be combined by a Map-Server to avoid searching
through the entire multi-level list of locator entries in a Map- through the entire multilevel list of locator entries in a Map-
Reply message. Reply message.
Address as Key: this AFI-encoded address will be attached with the Address as Key: AFI-encoded address that will be attached with the
attributes encoded in "Address as Value" which follows this field. attributes encoded in "Address as Value", which follows this
field.
AFI = y: y is the "Address of Value" AFI that can have any value AFI = y: y is the "Address of Value" AFI that can have any value
from [AFI]. A specific AFI has its own encoding of either a from [AFN]. A specific AFI has its own encoding of either a
unicast or multicast locator address. All RTR/ETR entries for the unicast or a multicast locator address. All RTR/ETR entries for
same level should be combined together by a Map-Server to avoid the same level should be combined by a Map-Server to avoid
searching through the entire multi-level list of locator entries searching through the entire multilevel list of locator entries in
in a Map-Reply message. a Map-Reply message.
Address as Value: this AFI-encoded address will be the attribute Address as Value: AFI-encoded address that will be the attribute
address that goes along with "Address as Key" which precedes this address that goes along with "Address as Key" which precedes this
field. field.
Usage: This is an experimental type where the usage has not been Usage: This is an experimental Type where the usage has not yet been
defined yet. defined.
5.6. Multiple Data-Planes 5.6. Multiple Data-Planes
Overlays are becoming popular in many parts of the network which have Overlays are becoming popular in many parts of the network, which has
created an explosion of data-plane encapsulation headers. Since the created an explosion of data-plane encapsulation headers. Since the
LISP mapping system can hold many types of address formats, it can LISP mapping system can hold many types of address formats, it can
represent the encapsulation format supported by an RLOC as well. represent the encapsulation format supported by an RLOC as well.
When an encapsulator receives a Map-Reply with an Encapsulation When an encapsulator receives a Map-Reply with an Encapsulation
Format LCAF Type encoded in an RLOC-record, it can select an Format LCAF Type encoded in an RLOC-record, it can select an
encapsulation format, that it can support, from any of the encapsulation format, that it can support, from any of the
encapsulation protocols which have the bit set to 1 in this LCAF encapsulation protocols that have the bit set to 1 in this LCAF Type.
type.
Encapsulation Format Address Format: Encapsulation Format Address Format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI = 16387 | Rsvd1 | Flags | | AFI = 16387 | Rsvd1 | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 16 | Rsvd2 | Length | | Type = 16 | Rsvd2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 36, line 26 skipping to change at page 30, line 26
| AFI = x | Address ... | | AFI = x | Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes starting and including the byte after this Length: length in bytes starting and including the byte after this
Length field. Length field.
Reserved-for-Future-Encapsulations: must be set to zero and ignored Reserved-for-Future-Encapsulations: must be set to zero and ignored
on receipt. This field will get bits allocated to future on receipt. This field will get bits allocated to future
encapsulations, as they are created. encapsulations, as they are created.
L: The RLOCs listed in the AFI-encoded addresses in the next longword U: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept layer 3 LISP encapsulation using destination UDP port can accept Generic UDP Encapsulation (GUE) using destination UDP
4341 [RFC6830]. port 6080 [GUE].
l: The RLOCs listed in the AFI-encoded addresses in the next longword G: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept layer 2 LISP encapsulation using destination UDP port can accept Geneve encapsulation using destination UDP port 6081
8472 [I-D.smith-lisp-layer2]. [GENEVE].
V: The RLOCs listed in the AFI-encoded addresses in the next longword N: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept VXLAN encapsulation using destination UDP port 4789 can accept NV-GRE (Network Virtualization - Generic Routing
[RFC7348]. Encapsulation) using IPv4/IPv6 protocol number 47 [RFC7637].
v: The RLOCs listed in the AFI-encoded addresses in the next longword v: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept VXLAN-GPE encapsulation using destination UDP port 4790 can accept VXLAN-GPE (Generic Protocol Extension) encapsulation
[I-D.quinn-vxlan-gpe]. using destination UDP port 4790 [GPE-VXLAN].
N: The RLOCs listed in the AFI-encoded addresses in the next longword V: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number can accept Virtual eXtensible Local Area Network (VXLAN)
47 [RFC7637]. encapsulation using destination UDP port 4789 [RFC7348].
G: The RLOCs listed in the AFI-encoded addresses in the next longword l: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept GENEVE encapsulation using destination UDP port 6081 can accept Layer 2 LISP encapsulation using destination UDP port
[I-D.gross-geneve]. 8472 [LISP-L2].
U: The RLOCs listed in the AFI-encoded addresses in the next longword L: The RLOCs listed in the AFI-encoded addresses in the next longword
can accept GUE encapsulation using destination UDP port TBD can accept Layer 3 LISP encapsulation using destination UDP port
[I-D.herbert-gue]. 4341 [RFC6830].
Usage: This encoding can be used in RLOC records in Map-Requests, Usage: This encoding can be used in RLOC-records in Map-Request, Map-
Map-Replies, Map-Registers, and Map-Notify messages. Reply, Map-Register, and Map-Notify messages.
6. Security Considerations 6. Security Considerations
This document is classified as Experimental. The LCAF encodings This document is classified as Experimental. The LCAF encodings
defined in this document are intended to be used with their defined in this document are intended to be used with their
corresponding use cases and in self-contained environments. Users corresponding use cases and in self-contained environments. Users
should carefully consider how the [I-D.ietf-lisp-sec] threat model should carefully consider how the [LISP-SEC] threat model applies to
applies to their particular use case. their particular use case.
The use of the Geo-Coordinates LCAF Type may raise physical privacy The use of the Geo-Coordinates LCAF Type may raise physical privacy
issues. Care should be taken when configuring the mapping system to issues. Care should be taken when configuring the mapping system to
use specific policy parameters so geo-location information is not use specific policy parameters so geolocation information is not
returned gratuitously. It is recommended that any documents that returned gratuitously. It is recommended that any documents that
specify the use of the Geo-Coordinates LCAF Type should consider the specify the use of the Geo-Coordinates LCAF Type should consider the
applicability of the BCP160 [RFC6280] for location-based privacy applicability of RFC 6280 (BCP 160) [RFC6280] for location-based
protection. privacy protection.
Additional privacy concerns have arisen since publication of BCP160, Additional privacy concerns have arisen since publication of BCP 160,
and future work on LISP should examine potential threats beyond and future work on LISP should examine potential threats beyond BCP
BCP160 and address improving privacy and security for LISP 160 and address improving privacy and security for LISP deployments.
deployments.
7. IANA Considerations 7. IANA Considerations
This document defines a canonical address format encoding used in This document defines a canonical address format encoding used in
LISP control messages and in the encoding of lookup keys for the LISP LISP control messages and in the encoding of lookup keys for the LISP
Mapping Database System. Such address format is based on a fixed AFI Mapping Database System. Such an address format is based on a fixed
(16387) and a LISP LCAF Type field. AFI (16387) and a LISP LCAF Type field.
The LISP LCAF Type field is an 8-bit field specific to the LISP The LISP LCAF Type field is an 8-bit field specific to the LISP
Canonical Address formatted encodings, for which IANA is to create Canonical Address Format encodings. IANA has created a new registry
and maintain a new registry (as outlined in [RFC5226]) entitled "LISP (as outlined in [RFC5226]) titled "LISP Canonical Address Format
LCAF Type". Initial values for the LISP LCAF Type registry are given (LCAF) Types". Initial values for the "LISP Canonical Address Format
below. Future assignments are to be made based on specification (LCAF) Types" registry are given below. Future assignments are to be
required. Assignments consist of a LISP LCAF Type name and its made using the Specification Required policy [RFC5226]. Assignments
associated value: consist of a LISP LCAF Type Name and its associated value:
+-------+------------------------------+------------+ +-------+------------------------+-----------+
| Value | LISP LCAF Type Name | Definition | | Value | LISP LCAF Type Name | Reference |
+-------+------------------------------+------------+ +-------+------------------------+-----------+
| 0 | Null Body Type | Section 3 | | 0 | Null Body | Section 3 |
| 1 | AFI List Type | Section 3 | | 1 | AFI List | Section 3 |
| 2 | Instance ID Type | Section 3 | | 2 | Instance ID | Section 3 |
| 3 | AS Number Type | Section 3 | | 3 | AS Number | Section 3 |
| 5 | Geo Coordinates Type | Section 3 | | 5 | Geo-Coordinates | Section 3 |
| 7 | NAT-Traversal Type | Section 3 | | 7 | NAT-Traversal | Section 3 |
| 9 | Multicast Info Type | Section 3 | | 9 | Multicast Info | Section 3 |
| 10 | Explicit Locator Path Type | Section 3 | | 10 | Explicit Locator Path | Section 3 |
| 11 | Security Key Type | Section 3 | | 11 | Security Key | Section 3 |
| 12 | Source/Dest Key Type | Section 3 | | 12 | Source/Dest Key | Section 3 |
| 13 | Replication List Entry Type | Section 3 | | 13 | Replication List Entry | Section 3 |
+-------+------------------------------+------------+ +-------+------------------------+-----------+
Table 1: LISP LCAF Type Initial Values Table 1: Initial Values in the
"LISP Canonical Address Format (LCAF) Types" Registry
8. References 8. References
8.1. Normative References 8.1. Normative References
[BCP160] "An Architecture for Location and Location Privacy in
Internet Applications", Best Current Practices
https://www.rfc-editor.org/bcp/bcp160.txt, July 2011.
[RFC1035] Mockapetris, P., "Domain names - implementation and [RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <http://www.rfc-editor.org/info/rfc1035>. November 1987, <http://www.rfc-editor.org/info/rfc1035>.
[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets", and E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<http://www.rfc-editor.org/info/rfc1918>. <http://www.rfc-editor.org/info/rfc1918>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
skipping to change at page 40, line 28 skipping to change at page 33, line 44
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<http://www.rfc-editor.org/info/rfc7348>. <http://www.rfc-editor.org/info/rfc7348>.
[RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
Virtualization Using Generic Routing Encapsulation", Virtualization Using Generic Routing Encapsulation",
RFC 7637, DOI 10.17487/RFC7637, September 2015, RFC 7637, DOI 10.17487/RFC7637, September 2015,
<http://www.rfc-editor.org/info/rfc7637>. <http://www.rfc-editor.org/info/rfc7637>.
8.2. Informative References 8.2. Informative References
[AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY [AFN] IANA, "Address Family Numbers",
NUMBERS http://www.iana.org/assignments/address-family- <http://www.iana.org/assignments/address-family-numbers/>.
numbers/address-family-numbers.xhtml?, Febuary 2007.
[I-D.coras-lisp-re] [EID-MOBILITY]
Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino,
Maino, F., and D. Farinacci, "LISP Replication F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a
Engineering", draft-coras-lisp-re-08 (work in progress), Unified Control Plane", Work in Progress,
November 2015. draft-portoles-lisp-eid-mobility-01, October 2016.
[I-D.ermagan-lisp-nat-traversal] [GENEVE] Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, Network Virtualization Encapsulation", Work in Progress,
F., and C. White, "NAT traversal for LISP", draft-ermagan- draft-ietf-nvo3-geneve-03, September 2016.
lisp-nat-traversal-11 (work in progress), August 2016.
[I-D.farinacci-lisp-te] [GPE-VXLAN]
Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
Engineering Use-Cases", draft-farinacci-lisp-te-11 (work Extension for VXLAN", Work in Progress,
in progress), September 2016. draft-ietf-nvo3-vxlan-gpe-03, October 2016.
[I-D.gross-geneve] [GUE] Herbert, T., Yong, L., and O. Zia, "Generic UDP
Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., Encapsulation", Work in Progress, draft-ietf-nvo3-gue-05,
Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: October 2016.
Generic Network Virtualization Encapsulation", draft-
gross-geneve-02 (work in progress), October 2014.
[I-D.herbert-gue] [JSON-BINARY]
Herbert, T., Yong, L., and O. Zia, "Generic UDP "Universal Binary JSON Specification",
Encapsulation", draft-herbert-gue-03 (work in progress), <http://ubjson.org>.
March 2015.
[I-D.ietf-lisp-crypto] [LISP-DDT] Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A.
Farinacci, D. and B. Weis, "LISP Data-Plane Smirnov, "LISP Delegated Database Tree", Work in
Confidentiality", draft-ietf-lisp-crypto-10 (work in Progress, draft-ietf-lisp-ddt-09, January 2017.
progress), October 2016.
[I-D.ietf-lisp-ddt] [LISP-L2] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2
Fuller, V., Lewis, D., Ermagan, V., Jain, A., and A. (L2) LISP Encapsulation Format", Work in Progress,
Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp- draft-smith-lisp-layer2-03, September 2013.
ddt-08 (work in progress), September 2016.
[I-D.ietf-lisp-sec] [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J.,
Maino, F., Ermagan, V., Cabellos-Aparicio, A., and D. Maino, F., and D. Farinacci, "LISP Replication
Saucez, "LISP-Security (LISP-SEC)", draft-ietf-lisp-sec-12 Engineering", Work in Progress,
(work in progress), November 2016. draft-coras-lisp-re-08, November 2015.
[I-D.portoles-lisp-eid-mobility] [LISP-SEC] Maino, F., Ermagan, V., Cabellos, A., and D. Saucez,
Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino, "LISP-Security (LISP-SEC)", Work in Progress,
F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a draft-ietf-lisp-sec-12, November 2016.
Unified Control Plane", draft-portoles-lisp-eid-
mobility-01 (work in progress), October 2016.
[I-D.quinn-vxlan-gpe] [LISP-TE] Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic
Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F., Engineering Use-Cases", Work in Progress,
Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg, draft-farinacci-lisp-te-11, September 2016.
P., and D. Melman, "Generic Protocol Extension for VXLAN",
draft-quinn-vxlan-gpe-04 (work in progress), February
2015.
[I-D.smith-lisp-layer2] [NAT-LISP] Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino,
Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 F., and C. White, "NAT traversal for LISP", Work in
(L2) LISP Encapsulation Format", draft-smith-lisp- Progress, draft-ermagan-lisp-nat-traversal-11, August
layer2-03 (work in progress), September 2013. 2016.
[JSON-BINARY] [RFC8061] Farinacci, D. and B. Weis, "Locator/ID Separation Protocol
"Universal Binary JSON Specification", (LISP) Data-Plane Confidentiality", RFC 8061,
URL http://ubjson.org. DOI 10.17487/RFC8061, February 2017,
<http://www.rfc-editor.org/info/rfc8061>.
[WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic [WGS-84] National Imagery and Mapping Agency, "Department of
System 1984", NIMA TR8350.2, January 2000, <http://earth- Defense World Geodetic System 1984", NIMA TR8350.2,
info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>. January 2000, <http://earth-info.nga.mil/GandG/
publications/tr8350.2/wgs84fin.pdf>.
Appendix A. Acknowledgments Acknowledgments
The authors would like to thank Vince Fuller, Gregg Schudel, Jesper The authors would like to thank Vince Fuller, Gregg Schudel, Jesper
Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for
their technical and editorial commentary. their technical and editorial commentary.
The authors would like to thank Victor Moreno for discussions that The authors would like to thank Victor Moreno for discussions that
lead to the definition of the Multicast Info LCAF type. led to the definition of the Multicast Info LCAF Type.
The authors would like to thank Parantap Lahiri and Michael Kowal for The authors would like to thank Parantap Lahiri and Michael Kowal for
discussions that lead to the definition of the Explicit Locator Path discussions that led to the definition of the Explicit Locator Path
(ELP) LCAF type. (ELP) LCAF Type.
The authors would like to thank Fabio Maino and Vina Ermagan for The authors would like to thank Fabio Maino and Vina Ermagan for
discussions that lead to the definition of the Security Key LCAF discussions that led to the definition of the Security Key LCAF Type.
type.
The authors would like to thank Albert Cabellos-Aparicio and Florin The authors would like to thank Albert Cabellos-Aparicio and Florin
Coras for discussions that lead to the definition of the Replication Coras for discussions that led to the definition of the Replication
List Entry LCAF type. List Entry LCAF Type.
Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for
suggesting new LCAF types. suggesting new LCAF Types.
Thanks also goes to Terry Manderson for assistance obtaining a LISP Thanks also goes to Terry Manderson for assistance obtaining a LISP
AFI value from IANA. AFI value from IANA.
And finally, the authors thank Stephen Farrell (Security Area And finally, the authors thank Stephen Farrell (Security Area
Director) and Deborah Brungard (Routing Area Director) for their Director) and Deborah Brungard (Routing Area Director) for their
suggested text to get the document through IESG review. suggested text to get the document through IESG review.
Appendix B. Document Change Log
[RFC Editor: Please delete this section on publication as RFC.]
B.1. Changes to draft-ietf-lisp-lcaf-22.txt
o Submitted November 2016.
o Take into account RTG area director Deborah Brungard's comments
suggestions.
o The changes put in shoudl clear Stephen's DISCUSS comments on
RLOC-record ordering and privacy concerns with the Geo-Coordinate
LCAF type.
B.2. Changes to draft-ietf-lisp-lcaf-21.txt
o Submitted November 2016.
o Reflect Alexey's DISCUSS comments.
o Add text to intro section that says the details for any LCAF type
can be found in other use-case documents.
o Provide general examples for JSON and DNS LCAF types.
B.3. Changes to draft-ietf-lisp-lcaf-20.txt
o Submitted October 2016.
o Put in references to DNS names and URIs per Alexey's comment.
B.4. Changes to draft-ietf-lisp-lcaf-19.txt
o Submitted October 2016.
o Make it more clear that any use-case documents that use the Geo-
Coordinates LCAF type should discuss RFC6280 compliance.
B.5. Changes to draft-ietf-lisp-lcaf-18.txt
o Submitted October 2016 after October 13th telechat.
o Addressed comments from Ben Campbell, Jari Arrko, Stephen Farrel,
Peter Yee, Dale Worley, Mirja Kuehlewind, and Suresh Krishnan.
B.6. Changes to draft-ietf-lisp-lcaf-17.txt
o Submitted October 2016.
o Addressed comments from Gen-ART reviewer Peter Yee.
o Addressed IESG last-call comments from Suresh Krishnan.
B.7. Changes to draft-ietf-lisp-lcaf-16.txt
o Submitted October 2016.
o Addressed comments from Security Directorate reviewer David
Mandelberg.
B.8. Changes to draft-ietf-lisp-lcaf-15.txt
o Submitted September 2016.
o Addressed comments from Routing Directorate reviewer Stig Venass.
B.9. Changes to draft-ietf-lisp-lcaf-14.txt
o Submitted July 2016.
o Fix IDnits errors and comments from Luigi Iannone, document
shepherd.
B.10. Changes to draft-ietf-lisp-lcaf-13.txt
o Submitted May 2016.
o Explain the Instance-ID LCAF Type is 32-bits in length and the
Instance-ID field in the LISP encapsulation header is 24-bits.
B.11. Changes to draft-ietf-lisp-lcaf-12.txt
o Submitted March 2016.
o Updated references and document timer.
o Removed the R, J, and L bits from the Multicast Info Type LCAF
since working group decided to not go forward with draft-
farinacci-lisp-mr-signaling-03.txt in favor of draft- ietf-lisp-
signal-free-00.txt.
B.12. Changes to draft-ietf-lisp-lcaf-11.txt
o Submitted September 2015.
o Reflecting comments from Prague LISP working group.
o Readying document for a LISP LCAF registry, RFC publication, and
for new use cases that will be defined in the new charter.
B.13. Changes to draft-ietf-lisp-lcaf-10.txt
o Submitted June 2015.
o Fix coauthor Job's contact information.
B.14. Changes to draft-ietf-lisp-lcaf-09.txt
o Submitted June 2015.
o Fix IANA Considerations section to request a registry to allocate
and track LCAF Type values.
B.15. Changes to draft-ietf-lisp-lcaf-08.txt
o Submitted April 2015.
o Comment from Florin. The Application Data Type length field has a
typo. The field should be labeled "12 + n" and not "8 + n".
o Fix length fields in the sections titled "Using Recursive LISP
Canonical Address Encodings", "Generic Database Mapping Lookups",
and "Data Model Encoding".
B.16. Changes to draft-ietf-lisp-lcaf-07.txt
o Submitted December 2014.
o Add a new LCAF Type called "Encapsulation Format" so decapsulating
xTRs can inform encapsulating xTRs what data-plane encapsulations
they support.
B.17. Changes to draft-ietf-lisp-lcaf-06.txt
o Submitted October 2014.
o Make it clear how sorted RLOC records are done when LCAFs are used
as the RLOC record.
B.18. Changes to draft-ietf-lisp-lcaf-05.txt
o Submitted May 2014.
o Add a length field of the JSON payload that can be used for either
binary or text encoding of JSON data.
B.19. Changes to draft-ietf-lisp-lcaf-04.txt
o Submitted January 2014.
o Agreement among ELP implementors to have the AFI 16-bit field
adjacent to the address. This will make the encoding consistent
with all other LCAF type address encodings.
B.20. Changes to draft-ietf-lisp-lcaf-03.txt
o Submitted September 2013.
o Updated references and author's affilations.
o Added Instance-ID to the Multicast Info Type so there is relative
ease in parsing (S,G) entries within a VPN.
o Add port range encodings to the Application Data LCAF Type.
o Add a new JSON LCAF Type.
o Add Address Key/Value LCAF Type to allow attributes to be attached
to an address.
B.21. Changes to draft-ietf-lisp-lcaf-02.txt
o Submitted March 2013.
o Added new LCAF Type "Replication List Entry" to support LISP
replication engineering use cases.
o Changed references to new LISP RFCs.
B.22. Changes to draft-ietf-lisp-lcaf-01.txt
o Submitted January 2013.
o Change longitude range from 0-90 to 0-180 in section 4.4.
o Added reference to WGS-84 in section 4.4.
B.23. Changes to draft-ietf-lisp-lcaf-00.txt
o Posted first working group draft August 2012.
o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt.
Authors' Addresses Authors' Addresses
Dino Farinacci Dino Farinacci
lispers.net lispers.net
San Jose, CA San Jose, CA
USA United States of America
Email: farinacci@gmail.com Email: farinacci@gmail.com
Dave Meyer Dave Meyer
Brocade Brocade
San Jose, CA San Jose, CA
USA United States of America
Email: dmm@1-4-5.net Email: dmm@1-4-5.net
Job Snijders Job Snijders
NTT Communications NTT Communications
Theodorus Majofskistraat 100 Theodorus Majofskistraat 100
Amsterdam 1065 SZ Amsterdam 1065 SZ
The Netherlands The Netherlands
Email: job@ntt.net Email: job@ntt.net
 End of changes. 211 change blocks. 
750 lines changed or deleted 526 lines changed or added

This html diff was produced by rfcdiff 1.45. The latest version is available from http://tools.ietf.org/tools/rfcdiff/