draft-ietf-idr-te-lsp-distribution-03.txt   draft-ietf-idr-te-lsp-distribution-04.txt 
Network Working Group J. Dong Network Working Group J. Dong
Internet-Draft M. Chen Internet-Draft M. Chen
Intended status: Standards Track Huawei Technologies Intended status: Standards Track Huawei Technologies
Expires: November 8, 2015 H. Gredler Expires: June 5, 2016 H. Gredler
Juniper Networks, Inc. Individual Contributor
S. Previdi S. Previdi
Cisco Systems, Inc. Cisco Systems, Inc.
J. Tantsura J. Tantsura
Ericsson Ericsson
May 7, 2015 December 3, 2015
Distribution of MPLS Traffic Engineering (TE) LSP State using BGP Distribution of MPLS Traffic Engineering (TE) LSP State using BGP
draft-ietf-idr-te-lsp-distribution-03 draft-ietf-idr-te-lsp-distribution-04
Abstract Abstract
This document describes a mechanism to collect the Traffic This document describes a mechanism to collect the Traffic
Engineering (TE) LSP information using BGP. Such information can be Engineering (TE) LSP information using BGP. Such information can be
used by external components for path reoptimization, service used by external components for path reoptimization, service
placement and network visualization. placement, and network visualization.
Requirements Language Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]. document are to be interpreted as described in RFC 2119 [RFC2119].
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
skipping to change at page 1, line 45 skipping to change at page 1, line 45
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 8, 2015. This Internet-Draft will expire on June 5, 2016.
Copyright Notice Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Carrying LSP State Information in BGP . . . . . . . . . . . . 4 2. Carrying LSP State Information in BGP . . . . . . . . . . . . 4
2.1. LSP Identifier Information . . . . . . . . . . . . . . . 4 2.1. MPLS TE LSP Information . . . . . . . . . . . . . . . . . 4
2.2. LSP State Information . . . . . . . . . . . . . . . . . . 6 2.2. IPv4/IPv6 MPLS TE LSP NLRI . . . . . . . . . . . . . . . 5
3. Operational Considerations . . . . . . . . . . . . . . . . . 7 2.2.1. MPLS TE LSP Descriptors . . . . . . . . . . . . . . . 6
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 2.3. LSP State Information . . . . . . . . . . . . . . . . . . 8
4.1. BGP-LS NLRI-Types . . . . . . . . . . . . . . . . . . . . 8 2.3.1. RSVP Objects . . . . . . . . . . . . . . . . . . . . 10
4.2. BGP-LS Protocol-IDs . . . . . . . . . . . . . . . . . . . 8 2.3.2. PCE Objects . . . . . . . . . . . . . . . . . . . . . 11
4.3. BGP-LS Instance-IDs . . . . . . . . . . . . . . . . . . . 9 2.3.3. SR Encap TLVs . . . . . . . . . . . . . . . . . . . . 11
4.4. BGP-LS Attribute TLVs . . . . . . . . . . . . . . . . . . 9 3. Operational Considerations . . . . . . . . . . . . . . . . . 12
5. Security Considerations . . . . . . . . . . . . . . . . . . . 9 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 9 4.1. BGP-LS NLRI-Types . . . . . . . . . . . . . . . . . . . . 12
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2. BGP-LS Protocol-IDs . . . . . . . . . . . . . . . . . . . 12
7.1. Normative References . . . . . . . . . . . . . . . . . . 9 4.3. BGP-LS Descriptors TLVs . . . . . . . . . . . . . . . . . 13
7.2. Informative References . . . . . . . . . . . . . . . . . 11 4.4. BGP-LS LSP-State TLV Protocol Origin . . . . . . . . . . 13
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 11 5. Security Considerations . . . . . . . . . . . . . . . . . . . 14
6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1. Normative References . . . . . . . . . . . . . . . . . . 14
7.2. Informative References . . . . . . . . . . . . . . . . . 15
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction 1. Introduction
In some network environments, the states of established Multi- In some network environments, the state of established Multi-Protocol
Protocol Label Switching (MPLS) Traffic Engineering (TE) Label Label Switching (MPLS) Traffic Engineering (TE) Label Switched Paths
Switched Paths (LSPs) in the network are required by some components (LSPs) and Tunnels in the network are required by components external
external to the network domain. Usually this information is directly to the network domain. Usually this information is directly
maintained by the ingress Label Edge Routers (LERs) of the MPLS TE maintained by the ingress Label Edge Routers (LERs) of the MPLS TE
LSPs. LSPs.
One example of using the LSP information is stateful Path Computation One example of using the LSP information is stateful Path Computation
Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide
benefits in path reoptimization . While some extensions are proposed benefits in path reoptimization. While some extensions are proposed
in Path Computation Element Communication Protocol (PCEP) for the in Path Computation Element Communication Protocol (PCEP) for the
Path Computation Clients (PCCs) to report the LSP states to the PCE, Path Computation Clients (PCCs) to report the LSP states to the PCE,
this mechanism may not be applicable in a management-based PCE this mechanism may not be applicable in a management-based PCE
architecture as specified in section 5.5 of [RFC4655]. As architecture as specified in section 5.5 of [RFC4655]. As
illustrated in the figure below, the PCC is not an LSR in the routing illustrated in the figure below, the PCC is not an LSR in the routing
domain, thus the head-end nodes of the TE-LSP may not implement the domain, thus the head-end nodes of the TE-LSPs may not implement the
PCEP protocol. In this case some general mechanism to collect the PCEP protocol. In this case a general mechanism to collect the TE-
TE-LSP states from the ingress LERs is needed. This document LSP states from the ingress LERs is needed. This document proposes
proposes an LSP state collection mechanism complementary to the an LSP state collection mechanism complementary to the mechanism
mechanism defined in [I-D.ietf-pce-stateful-pce]. defined in [I-D.ietf-pce-stateful-pce].
----------- -----------
| ----- | | ----- |
Service | | TED |<-+-----------> Service | | TED |<-+----------->
Request | ----- | TED synchronization Request | ----- | TED synchronization
| | | | mechanism (for example, | | | | mechanism (for example,
v | | | routing protocol) v | | | routing protocol)
------------- Request/ | v | ------------- Request/ | v |
| | Response| ----- | | | Response| ----- |
| NMS |<--------+> | PCE | | | NMS |<--------+> | PCE | |
skipping to change at page 3, line 35 skipping to change at page 3, line 41
Request | Request |
v v
---------- Signaling ---------- ---------- Signaling ----------
| Head-End | Protocol | Adjacent | | Head-End | Protocol | Adjacent |
| Node |<---------->| Node | | Node |<---------->| Node |
---------- ---------- ---------- ----------
Figure 1. Management-Based PCE Usage Figure 1. Management-Based PCE Usage
In networks with composite PCE nodes as specified in section 5.1 of In networks with composite PCE nodes as specified in section 5.1 of
[RFC4655], the PCE is implemented on several routers in the network, [RFC4655], PCE is implemented on several routers in the network, and
and the PCCs in the network can use the mechanism described in the PCCs in the network can use the mechanism described in
[I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE [I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE
nodes. An external component may further need to collect the LSP nodes. An external component may also need to collect the LSP
information from all the PCEs in the network to get a global view of information from all the PCEs in the network to obtain a global view
the LSP states in the network. of the LSP state in the network.
In multi-area or multi-AS scenarios, each area or AS can have a child In multi-area or multi-AS scenarios, each area or AS can have a child
PCE to collect the LSP states of its own domain, in addition a parent PCE to collect the LSP state in its own domain, in addition, a parent
PCE needs to collect the LSP information from multiple child PCEs to PCE needs to collect LSP information from multiple child PCEs to
obtain a global view of LSPs inside and across the domains involved. obtain a global view of LSPs inside and across the domains involved.
In another network scenario, a centralized controller is used for In another network scenario, a centralized controller is used for
service placement. Obtaining the TE LSP state information is quite service placement. Obtaining the TE LSP state information is quite
important for making appropriate service placement decisions with the important for making appropriate service placement decisions with the
purpose of both meeting the application's requirements and utilizing purpose to both meet the application's requirements and utilize
the network resource efficiently. network resources efficiently.
The Network Management System (NMS) may need to provide global The Network Management System (NMS) may need to provide global
visibility of the TE LSPs in the network as part of the network visibility of the TE LSPs in the network as part of the network
visualization function. visualization function.
BGP has been extended to distribute link-state and traffic BGP has been extended to distribute link-state and traffic
engineering information to some external components engineering information to external components
[I-D.ietf-idr-ls-distribution]. Using the same protocol to collect [I-D.ietf-idr-ls-distribution]. Using the same protocol to collect
other network layer information would be desirable for the external TE LSP information is desirable for these external components since
components, which avoids introducing multiple protocols for network this avoids introducing multiple protocols for network information
information collection. This document describes a mechanism to collection. This document describes a mechanism to distribute TE LSP
distribute the TE LSP information to external components using BGP. information to external components using BGP.
2. Carrying LSP State Information in BGP 2. Carrying LSP State Information in BGP
2.1. LSP Identifier Information 2.1. MPLS TE LSP Information
The TE LSP Identifier information is advertised in BGP UPDATE The MPLS TE LSP information is advertised in BGP UPDATE messages
messages using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes [RFC4760].
[RFC4760]. The "Link-State NLRI" defined in The "Link-State NLRI" defined in [I-D.ietf-idr-ls-distribution] is
[I-D.ietf-idr-ls-distribution] is extended to carry the TE LSP extended to carry the MPLS TE LSP information. BGP speakers that
Identifier information. BGP speakers that wish to exchange TE LSP wish to exchange MPLS TE LSP information MUST use the BGP
information MUST use the BGP Multiprotocol Extensions Capability Code Multiprotocol Extensions Capability Code (1) to advertise the
(1) to advertise the corresponding (AFI, SAFI) pair, as specified in corresponding (AFI, SAFI) pair, as specified in [RFC4760].
[RFC4760].
The format of "Link-State NLRI" is defined in The format of "Link-State NLRI" is defined in
[I-D.ietf-idr-ls-distribution]. Two new "NLRI Type" are defined for [I-D.ietf-idr-ls-distribution]. A new "NLRI Type" is defined for
TE LSP Identifier Information as following: MPLS TE LSP Information as following:
o NLRI Type = 5: IPv4 TE LSP NLRI o NLRI Type: IPv4/IPv6 MPLS TE LSP NLRI (suggested codepoint value
5, to be assigned by IANA).
o NLRI Type = 6: IPv6 TE LSP NLRI [I-D.ietf-idr-ls-distribution] defines the BGP-LS NLRI as follows:
The IPv4 TE LSP NLRI (NLRI Type = 5) is shown in the following 0 1 2 3
figure: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NLRI Type | Total NLRI Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// Link-State NLRI (variable) //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This document defines a new NLRI-Type and its format: the IPv4/IPv6
MPLS TE LSP NLRI defined in the following section.
2.2. IPv4/IPv6 MPLS TE LSP NLRI
The IPv4/IPv6 MPLS TE LSP NLRI (NLRI Type 5. Suggested value, to be
assigned by IANA) is shown in the following figure:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Protocol-ID | | Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Identifier |
| (64 bits) | | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Tunnel Sender Address | // MPLS TE LSP Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel ID | LSP ID |
where:
o Protocol-ID field specifies the type of signaling of the MPLS TE
LSP. The following Protocol-IDs are defined (suggested values, to
be assigned by IANA) and apply to the IPv4/IPv6 MPLS TE LSP NLRI:
+-------------+----------------------------------+
| Protocol-ID | NLRI information source protocol |
+-------------+----------------------------------+
| 7 | RSVP-TE |
| 8 | Segment Routing |
+-------------+----------------------------------+
o "Identifier" is an 8 octet value as defined in
[I-D.ietf-idr-ls-distribution].
o Following MPLS TE LSP Descriptors are defined:
+-----------+----------------------------------+
| Codepoint | Descriptor TLV |
+-----------+----------------------------------+
| 267 | Tunnel ID |
| 268 | LSP ID |
| 269 | IPv4/6 Tunnel Head-end address |
| 270 | IPv4/6 Tunnel Tail-end address |
| 271 | SR-ENCAP Identifier |
+-----------+----------------------------------+
2.2.1. MPLS TE LSP Descriptors
This sections defines the MPLS TE Descriptors TLVs.
2.2.1.1. Tunnel Identifier (Tunnel ID)
The Tunnel Identifier TLV contains the Tunnel ID defined in [RFC3209]
and has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Tunnel End-point Address | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2. IPv4 TE LSP NLRI | Tunnel ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The IPv6 TE LSP NLRI (NLRI Type = 6) is shown in the following where:
figure:
o Type: To be assigned by IANA (suggested value: 267)
o Length: 2 octets.
o Tunnel ID: 2 octets as defined in [RFC3209].
2.2.1.2. LSP Identifier (LSP ID)
The LSP Identifier TLV contains the LSP ID defined in [RFC3209] and
has the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+
| Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Type | Length |
| (64 bits) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSP ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:
o Type: To be assigned by IANA (suggested value: 268)
o Length: 2 octets.
o LSP ID: 2 octets as defined in [RFC3209].
2.2.1.3. IPv4/IPv6 Tunnel Head-End Address
The IPv4/IPv6 Tunnel Head-End Address TLV contains the Tunnel Head-
End Address defined in [RFC3209] and has following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// IPv4/IPv6 Tunnel Head-End Address (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:
o Type: To be assigned by IANA (suggested value: 269)
o Length: 4 or 16 octets.
When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv4
address, its length is 4 (octets).
When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv6
address, its length is 16 (octets).
2.2.1.4. IPv4/IPv6 Tunnel Tail-End Address
The IPv4/IPv6 Tunnel Tail-End Address TLV contains the Tunnel Tail-
End Address defined in [RFC3209] and has following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// IPv4/IPv6 Tunnel Tail-End Address (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:
o Type: To be assigned by IANA (suggested value: 270)
o Length: 4 or 16 octets.
When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv4
address, its length is 4 (octets).
When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv6
address, its length is 16 (octets).
2.2.1.5. SR-Encap TLV
The SR-ENCAP TLV contains the Identifier defined in
[I-D.sreekantiah-idr-segment-routing-te] and has the following
format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SR-ENCAP Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:
o Type: To be assigned by IANA (suggested value: 271)
o Length: 4 octets.
o SR-ENCAP Identifier: 4 octets as defined in
[I-D.sreekantiah-idr-segment-routing-te].
2.3. LSP State Information
A new TLV called "LSP State TLV" (codepoint to be assigned by IANA),
is used to describe the characteristics of the MPLS TE LSPs, which is
carried in the optional non-transitive BGP Attribute "LINK_STATE
Attribute" defined in [I-D.ietf-idr-ls-distribution]. These MPLS TE
LSP characteristics include the switching technology of the LSP,
Quality of Service (QoS) parameters, route information, the
protection mechanisms, etc.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
+ + // LSP State Information (variable) //
| IPv6 Tunnel Sender Address |
+ (16 octets) +
| |
+ +
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tunnel ID | LSP ID |
LSP State TLV
Type: Suggested value 1158 (to be assigned by IANA)
LSP State Information: Consists of a set of TE-LSP objects as defined
in [RFC3209],[RFC3473] and [RFC5440]. Rather than replicating all
MPLS TE LSP related objects in this document, the semantics and
encodings of the MPLS TE LSP objects are reused. These MPLS TE LSP
objects are carried in the "LSP State Information" with the following
format.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Protocol-Origin| Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
+ + // Protocol specific TE-LSP object //
| IPv6 Tunnel End-point Address |
+ (16 octets) +
| |
+ +
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3. IPv6 TE LSP NLRI
For IPv4 and IPv6 TE LSP NLRI, the Protocol-ID field specifies the LSP State Information
type of signaling of the TE LSP. The following Protocol-IDs applies
to IPv4/IPv6 TE LSP NLRI:
+-------------+----------------------------------+ The Protocol-Origin field identifies the protocol from which the
| Protocol-ID | NLRI information source protocol | contained MPLS TE LSP object originated. This allows for MPLS TE LSP
+-------------+----------------------------------+ objects defined in different protocols to be collected while avoiding
| TBD | RSVP-TE | the possible code collisions among these protocols. Three Protocol-
| TBD | Segment Routing | Origins are defined in this document (suggested values, to be
+-------------+----------------------------------+ assigned by IANA)
The 64-Bit 'Identifier' field is used to discriminate between +----------+--------------+
instances with different LSP technologies. The default identifier | Protocol | LSP Object |
"0" identifies the instance for packet switched LSPs. A new | Origin | Origin |
identifier TBD is used to identify the instance of optical layer +----------+--------------+
LSPs. | 1 | RSVP-TE |
| 2 | PCE |
| 3 | SR ENCAP |
+----------+--------------+
The other fields in the IPv4 TE LSP NLRI and IPv6 TE LSP NLRI are the The 8-bit Reserved field SHOULD be set to 0 on transmission and
same as defined in [RFC3209]. When the Protocol-ID is set to Segment ignored on receipt.
Routing, the Tunnel ID and LSP ID field SHOULD be filled with the
source node's locally generated identifiers which can uniquely
identify a specific SR LSP.
2.2. LSP State Information The Length field is set to the Length of the value field, which is
the total length of the contained MPLS TE LSP object.
The LSP State TLV is used to describe the characteristics of the TE The Valued field is a MPLS-TE LSP object which is defined in the
LSPs, which is carried in the optional non-transitive BGP Attribute protocol identified by the Protocol-Origin field.
"LINK_STATE Attribute" defined in [I-D.ietf-idr-ls-distribution].
The "Value" field of the LSP State TLV corresponds to the format and 2.3.1. RSVP Objects
semantics of a set of objects defined in [RFC3209], [RFC3473] and
other extensions for TE LSPs. Rather than replicating all RSVP-TE
related objects in this document, the semantics and encodings of the
existing TE LSP objects are re-used. Hence all TE LSP objects are
regarded as sub-TLVs. The LSP State TLV SHOULD only be used with
IPv4/IPv6 TE LSP NLRI.
0 1 2 3 RSVP-TE objects are encoded in the "Value" field of the LSP State TLV
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 and consists of MPLS TE LSP objects defined in RSVP-TE [RFC3209]
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ [RFC3473]. Rather than replicating all MPLS TE LSP related objects
| Type | Length | in this document, the semantics and encodings of the MPLS TE LSP
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ objects are re-used. These MPLS TE LSP objects are carried in the
| | LSP State TLV.
~ TE LSP Objects (variable) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4. LSP State TLV
Currently the TE LSP Objects that can be carried in the LSP State TLV When carrying RSVP-TE objects, the "Protocol-Origin" field is set to
include: "RSVP-TE" (suggested value 1, to be assigned by IANA).
The following RSVP-TE Objects are defined:
o SENDER_TSPEC and FLOW_SPEC [RFC2205] o SENDER_TSPEC and FLOW_SPEC [RFC2205]
o SESSION_ATTRIBUTE [RFC3209] o SESSION_ATTRIBUTE [RFC3209]
o Explicit Route Object (ERO) [RFC3209] o EXPLICIT_ROUTE Object (ERO) [RFC3209]
o Record Route Object (RRO) [RFC3209] o ROUTE_RECORD Object (RRO) [RFC3209]
o FAST_REROUTE Object [RFC4090] o FAST_REROUTE Object [RFC4090]
o DETOUR Object [RFC4090] o DETOUR Object [RFC4090]
o EXCLUDE_ROUTE Object (XRO) [RFC4874] o EXCLUDE_ROUTE Object (XRO) [RFC4874]
o SECONDARY_EXPLICIT_ROUTE Object (SERO) [RFC4873] o SECONDARY_EXPLICIT_ROUTE Object (SERO) [RFC4873]
o SECONDARY_RECORD_ROUTE (SRRO) [RFC4873] o SECONDARY_RECORD_ROUTE (SRRO) [RFC4873]
skipping to change at page 7, line 38 skipping to change at page 10, line 49
o LSP_REQUIRED_ATTRIBUTES Object [RFC5420] o LSP_REQUIRED_ATTRIBUTES Object [RFC5420]
o PROTECTION Object [RFC3473][RFC4872][RFC4873] o PROTECTION Object [RFC3473][RFC4872][RFC4873]
o ASSOCIATION Object [RFC4872] o ASSOCIATION Object [RFC4872]
o PRIMARY_PATH_ROUTE Object [RFC4872] o PRIMARY_PATH_ROUTE Object [RFC4872]
o ADMIN_STATUS Object [RFC3473] o ADMIN_STATUS Object [RFC3473]
o BANDWIDTH Object [RFC5440] o LABEL_REQUEST Object [RFC3209][RFC3473]
For the MPLS TE LSP Objects listed above, the corresponding sub-
objects are also applicable to this mechanism. Note that this list
is not exhaustive, other MPLS TE LSP objects which reflect specific
characteristics of the MPLS TE LSP can also be carried in the LSP
state TLV.
2.3.2. PCE Objects
PCE objects are encoded in the "Value" field of the MPLS TE LSP State
TLV and consists of PCE objects defined in [RFC5440]. Rather than
replicating all MPLS TE LSP related objects in this document, the
semantics and encodings of the MPLS TE LSP objects are re-used.
These MPLS TE LSP objects are carried in the LSP State TLV.
When carrying PCE objects, the "Protocol-Origin" field is set to
"PCE" (suggested value 2, to be assigned by IANA).
The following PCE Objects are defined:
o METRIC Object [RFC5440] o METRIC Object [RFC5440]
For the TE LSP Objects listed above, the corresponding subobjects are o BANDWIDTH Object [RFC5440]
also applicable to this mechanism. Other TE LSP objects which
reflect specific states or attributes of the LSP may also be carried For the MPLS TE LSP Objects listed above, the corresponding sub-
in the LSP state TLV, which is for further study. objects are also applicable to this mechanism. Note that this list
is not exhaustive, other MPLS TE LSP objects which reflect specific
characteristics of the MPLS TE LSP can also be carried in the LSP
state TLV.
2.3.3. SR Encap TLVs
SR-ENCAP objects are encoded in the "Value" field of the LSP State
TLV and consists of SR-ENCAP objects defined in
[I-D.sreekantiah-idr-segment-routing-te]. Rather than replicating
all MPLS TE LSP related objects in this document, the semantics and
encodings of the MPLS TE LSP objects are re-used. These MPLS TE LSP
objects are carried in the LSP State TLV.
When carrying SR-ENCAP objects, the "Protocol-Origin" field is set to
"SR-ENCAP" (suggested value 3, to be assigned by IANA).
The following SR-ENCAP Objects are defined:
o ERO TLV [I-D.sreekantiah-idr-segment-routing-te]
o Weight TLV [I-D.sreekantiah-idr-segment-routing-te]
o Binding SID TLV [I-D.sreekantiah-idr-segment-routing-te]
For the MPLS TE LSP Objects listed above, the corresponding sub-
objects are also applicable to this mechanism. Note that this list
is not exhaustive, other MPLS TE LSP objects which reflect specific
characteristics of the MPLS TE LSP can also be carried in the LSP
state TLV.
3. Operational Considerations 3. Operational Considerations
The Existing BGP operational procedures apply to this document. No The Existing BGP operational procedures apply to this document. No
new operation procedures are defined in this document. The new operation procedures are defined in this document. The
operational considerations as specified in operational considerations as specified in
[I-D.ietf-idr-ls-distribution] apply to this document. [I-D.ietf-idr-ls-distribution] apply to this document.
In general the ingress nodes of the LSPs are responsible for the In general the ingress nodes of the MPLS TE LSPs are responsible for
distribution of LSP state information, while other nodes on the LSP the distribution of LSP state information, while other nodes on the
path may report the LSP information if needed, e.g. the border LSP path MAY report the LSP information when needed. For example,
routers in the inter-domain case, where the ingress node may not have the border routers in the inter-domain case will also distribute LSP
the complete information of the end-to-end path. state information since the ingress node may not have the complete
information for the end-to-end path.
4. IANA Considerations 4. IANA Considerations
IANA is requested to administer the assignment of new values defined This document requires new IANA assigned codepoints.
in this document and summarized in this section.
IANA needs to assign one new TLV type for "LSP State TLV" from the
registry of BGP-LS Attribute TLVs.
4.1. BGP-LS NLRI-Types 4.1. BGP-LS NLRI-Types
IANA maintains a registry called "Border Gateway Protocol - Link IANA maintains a registry called "Border Gateway Protocol - Link
State (BGP-LS) Parameters" with a sub-registry called "BGP-LS NLRI- State (BGP-LS) Parameters" with a sub-registry called "BGP-LS NLRI-
Types". Types".
IANA is requested to assign two new NLRI-Types: The following codepoints is suggested (to be assigned by IANA):
+------+---------------------------+---------------+ +------+----------------------------+---------------+
| Type | NLRI Type | Reference | | Type | NLRI Type | Reference |
+------+---------------------------+---------------+ +------+----------------------------+---------------+
| 5 | IPv4 TE LSP NLRI | this document | | 5 | IPv4/IPv6 MPLS TE LSP NLRI | this document |
| 6 | IPv6 TE LSP NLRI | this document | +------+----------------------------+---------------+
+------+---------------------------+---------------+
4.2. BGP-LS Protocol-IDs 4.2. BGP-LS Protocol-IDs
IANA maintains a registry called "Border Gateway Protocol - Link IANA maintains a registry called "Border Gateway Protocol - Link
State (BGP-LS) Parameters" with a sub-registry called "BGP-LS State (BGP-LS) Parameters" with a sub-registry called "BGP-LS
Protocol-IDs". Protocol-IDs".
IANA is requested to assign two new Protocol-IDs: The following Protocol-ID codepoints are suggested (to be assigned by
IANA):
+-------------+----------------------------------+---------------+ +-------------+----------------------------------+---------------+
| Protocol-ID | NLRI information source protocol | Reference | | Protocol-ID | NLRI information source protocol | Reference |
+-------------+----------------------------------+---------------+ +-------------+----------------------------------+---------------+
| TBD | RSVP-TE | this document | | 7 | RSVP-TE | this document |
| TBD | Segment Routing | this document | | 8 | Segment Routing | this document |
+-------------+----------------------------------+---------------+ +-------------+----------------------------------+---------------+
4.3. BGP-LS Instance-IDs 4.3. BGP-LS Descriptors TLVs
IANA maintains a registry called "Border Gateway Protocol - Link IANA maintains a registry called "Border Gateway Protocol - Link
State (BGP-LS) Parameters" with a sub-registry called "BGP-LS Well- State (BGP-LS) Parameters" with a sub-registry called "Node Anchor,
known Instance-IDs". Link Descriptor and Link Attribute TLVs".
IANA is requested to assign one new Instance-ID:
+------------+----------------------------------+---------------+ The following TLV codepoints are suggested (to be assigned by IANA):
| Identifier | Routing Universe | Reference: |
+------------+----------------------------------+---------------+
| TBD | Default Optical Network Topology | this document |
+------------+----------------------------------+---------------+
4.4. BGP-LS Attribute TLVs +----------+--------------------------------------+---------------+
| TLV Code | Description | Value defined |
| Point | | in |
+----------+--------------------------------------+---------------+
| 1158 | LSP State TLV | this document |
| 267 | Tunnel ID TLV | this document |
| 268 | LSP ID TLV | this document |
| 269 | IPv4/6 Tunnel Head-end address TLV | this document |
| 270 | IPv4/6 Tunnel Tail-end address TLV | this document |
| 271 | SR-ENCAP Identifier TLV | this document |
+----------+--------------------------------------+---------------+
IANA maintains a registry called "Border Gateway Protocol - Link 4.4. BGP-LS LSP-State TLV Protocol Origin
State (BGP-LS) Parameters" with a sub-registry called "Node Anchor,
Link Descriptor and Link Attribute TLVs".
IANA is requested to assign one new TLV code point: This document requests IANA to maintain a new sub-registry under
"Border Gateway Protocol - Link State (BGP-LS) Parameters". The new
registry is called "Protocol Origin" and contains the codepoints
allocated to the "Protocol Origin" field defined in Section 2.3. The
registry contains the following codepoints (suggested values, to be
assigned by IANA):
+-----------+---------------------+---------------+-----------------+ +----------+--------------+
| TLV Code | Description | IS-IS TLV/ | Value defined | | Protocol | Description |
| Point | | Sub-TLV | in: | | Origin | |
+-----------+---------------------+---------------+-----------------+ +----------+--------------+
| TBD | LSP State TLV | --- | this document | | 1 | RSVP-TE |
+-----------+---------------------+---------------+-----------------+ | 2 | PCE |
| 3 | SR-ENCAP |
+----------+--------------+
5. Security Considerations 5. Security Considerations
Procedures and protocol extensions defined in this document do not Procedures and protocol extensions defined in this document do not
affect the BGP security model. See [RFC6952] for details. affect the BGP security model. See [RFC6952] for details.
6. Acknowledgements 6. Acknowledgements
The authors would like to thank Dhruv Dhody and Mohammed Abdul Aziz The authors would like to thank Dhruv Dhody, Mohammed Abdul Aziz
Khalid for their review and valuable comments. Khalid, Lou Berger, Acee Lindem, Siva Sivabalan and Arjun Sreekantiah
for their review and valuable comments.
7. References 7. References
7.1. Normative References 7.1. Normative References
[I-D.ietf-idr-ls-distribution] [I-D.ietf-idr-ls-distribution]
Gredler, H., Medved, J., Previdi, S., Farrel, A., and S. Gredler, H., Medved, J., Previdi, S., Farrel, A., and S.
Ray, "North-Bound Distribution of Link-State and TE Ray, "North-Bound Distribution of Link-State and TE
Information using BGP", draft-ietf-idr-ls-distribution-10 Information using BGP", draft-ietf-idr-ls-distribution-13
(work in progress), January 2015. (work in progress), October 2015.
[I-D.sreekantiah-idr-segment-routing-te]
Sreekantiah, A., Filsfils, C., Previdi, S., Sivabalan, S.,
Mattes, P., and J. Marcon, "Segment Routing Traffic
Engineering Policy using BGP", draft-sreekantiah-idr-
segment-routing-te-00 (work in progress), October 2015.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S. [RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", RFC 2205, September 1997. Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
September 1997, <http://www.rfc-editor.org/info/rfc2205>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001. Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<http://www.rfc-editor.org/info/rfc3209>.
[RFC3473] Berger, L., "Generalized Multi-Protocol Label Switching [RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label
(GMPLS) Signaling Resource ReserVation Protocol-Traffic Switching (GMPLS) Signaling Resource ReserVation Protocol-
Engineering (RSVP-TE) Extensions", RFC 3473, January 2003. Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
DOI 10.17487/RFC3473, January 2003,
<http://www.rfc-editor.org/info/rfc3473>.
[RFC4090] Pan, P., Swallow, G., and A. Atlas, "Fast Reroute [RFC4090] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
Extensions to RSVP-TE for LSP Tunnels", RFC 4090, May Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
2005. DOI 10.17487/RFC4090, May 2005,
<http://www.rfc-editor.org/info/rfc4090>.
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
"Multiprotocol Extensions for BGP-4", RFC 4760, January "Multiprotocol Extensions for BGP-4", RFC 4760,
2007. DOI 10.17487/RFC4760, January 2007,
<http://www.rfc-editor.org/info/rfc4760>.
[RFC4872] Lang, J., Rekhter, Y., and D. Papadimitriou, "RSVP-TE [RFC4872] Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
Extensions in Support of End-to-End Generalized Multi- Ed., "RSVP-TE Extensions in Support of End-to-End
Protocol Label Switching (GMPLS) Recovery", RFC 4872, May Generalized Multi-Protocol Label Switching (GMPLS)
2007. Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
<http://www.rfc-editor.org/info/rfc4872>.
[RFC4873] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel, [RFC4873] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
"GMPLS Segment Recovery", RFC 4873, May 2007. "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
May 2007, <http://www.rfc-editor.org/info/rfc4873>.
[RFC4874] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes - [RFC4874] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
Extension to Resource ReserVation Protocol-Traffic Extension to Resource ReserVation Protocol-Traffic
Engineering (RSVP-TE)", RFC 4874, April 2007. Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
April 2007, <http://www.rfc-editor.org/info/rfc4874>.
[RFC5420] Farrel, A., Papadimitriou, D., Vasseur, JP., and A. [RFC5420] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
Ayyangarps, "Encoding of Attributes for MPLS LSP Ayyangarps, "Encoding of Attributes for MPLS LSP
Establishment Using Resource Reservation Protocol Traffic Establishment Using Resource Reservation Protocol Traffic
Engineering (RSVP-TE)", RFC 5420, February 2009. Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
February 2009, <http://www.rfc-editor.org/info/rfc5420>.
[RFC5440] Vasseur, JP. and JL. Le Roux, "Path Computation Element [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
(PCE) Communication Protocol (PCEP)", RFC 5440, March Element (PCE) Communication Protocol (PCEP)", RFC 5440,
2009. DOI 10.17487/RFC5440, March 2009,
<http://www.rfc-editor.org/info/rfc5440>.
7.2. Informative References 7.2. Informative References
[I-D.ietf-pce-stateful-pce] [I-D.ietf-pce-stateful-pce]
Crabbe, E., Minei, I., Medved, J., and R. Varga, "PCEP Crabbe, E., Minei, I., Medved, J., and R. Varga, "PCEP
Extensions for Stateful PCE", draft-ietf-pce-stateful- Extensions for Stateful PCE", draft-ietf-pce-stateful-
pce-11 (work in progress), April 2015. pce-13 (work in progress), December 2015.
[RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", RFC 4655, August 2006. Element (PCE)-Based Architecture", RFC 4655,
DOI 10.17487/RFC4655, August 2006,
<http://www.rfc-editor.org/info/rfc4655>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP, and MSDP Issues According to the Keying BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design and Authentication for Routing Protocols (KARP) Design
Guide", RFC 6952, May 2013. Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
<http://www.rfc-editor.org/info/rfc6952>.
Authors' Addresses Authors' Addresses
Jie Dong Jie Dong
Huawei Technologies Huawei Technologies
Huawei Campus, No. 156 Beiqing Rd. Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095 Beijing 100095
China China
Email: jie.dong@huawei.com Email: jie.dong@huawei.com
Mach(Guoyi) Chen Mach(Guoyi) Chen
Huawei Technologies Huawei Technologies
Huawei Campus, No. 156 Beiqing Rd. Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095 Beijing 100095
China China
Email: mach.chen@huawei.com Email: mach.chen@huawei.com
Hannes Gredler Hannes Gredler
Juniper Networks, Inc. Individual Contributor
1194 N. Mathilda Ave. Austria
Sunnyvale, CA 94089
US Email: hannes@gredler.at
Email: hannes@juniper.net
Stefano Previdi Stefano Previdi
Cisco Systems, Inc. Cisco Systems, Inc.
Via Del Serafico, 200 Via Del Serafico, 200
Rome 00142 Rome 00142
Italy Italy
Email: sprevidi@cisco.com Email: sprevidi@cisco.com
Jeff Tantsura Jeff Tantsura
Ericsson Ericsson
300 Holger Way 300 Holger Way
San Jose, CA 95134 San Jose, CA 95134
US US
Email: jeff.tantsura@ericsson.com Email: jeff.tantsura@ericsson.com
 End of changes. 80 change blocks. 
209 lines changed or deleted 445 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/