draft-ietf-idr-ls-distribution-03.txt   draft-ietf-idr-ls-distribution-04.txt 
Inter-Domain Routing H. Gredler Inter-Domain Routing H. Gredler
Internet-Draft Juniper Networks, Inc. Internet-Draft Juniper Networks, Inc.
Intended status: Standards Track J. Medved Intended status: Standards Track J. Medved
Expires: November 22, 2013 S. Previdi Expires: May 22, 2014 S. Previdi
Cisco Systems, Inc. Cisco Systems, Inc.
A. Farrel A. Farrel
Juniper Networks, Inc. Juniper Networks, Inc.
S. Ray S. Ray
Cisco Systems, Inc. Cisco Systems, Inc.
May 21, 2013 November 18, 2013
North-Bound Distribution of Link-State and TE Information using BGP North-Bound Distribution of Link-State and TE Information using BGP
draft-ietf-idr-ls-distribution-03 draft-ietf-idr-ls-distribution-04
Abstract Abstract
In a number of environments, a component external to a network is In a number of environments, a component external to a network is
called upon to perform computations based on the network topology and called upon to perform computations based on the network topology and
current state of the connections within the network, including current state of the connections within the network, including
traffic engineering information. This is information typically traffic engineering information. This is information typically
distributed by IGP routing protocols within the network distributed by IGP routing protocols within the network
This document describes a mechanism by which links state and traffic This document describes a mechanism by which links state and traffic
skipping to change at page 1, line 42 skipping to change at page 1, line 42
Applications of this technique include Application Layer Traffic Applications of this technique include Application Layer Traffic
Optimization (ALTO) servers, and Path Computation Elements (PCEs). Optimization (ALTO) servers, and Path Computation Elements (PCEs).
Requirements Language Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]. document are to be interpreted as described in RFC 2119 [RFC2119].
Status of this Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 22, 2013. This Internet-Draft will expire on May 22, 2014.
Copyright Notice Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Motivation and Applicability . . . . . . . . . . . . . . . . . 6 2. Motivation and Applicability . . . . . . . . . . . . . . . . 5
2.1. MPLS-TE with PCE . . . . . . . . . . . . . . . . . . . . . 6 2.1. MPLS-TE with PCE . . . . . . . . . . . . . . . . . . . . 5
2.2. ALTO Server Network API . . . . . . . . . . . . . . . . . 8 2.2. ALTO Server Network API . . . . . . . . . . . . . . . . . 6
3. Carrying Link State Information in BGP . . . . . . . . . . . . 9 3. Carrying Link State Information in BGP . . . . . . . . . . . 7
3.1. TLV Format . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. TLV Format . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. The Link State NLRI . . . . . . . . . . . . . . . . . . . 10 3.2. The Link-State NLRI . . . . . . . . . . . . . . . . . . . 8
3.2.1. Node Descriptors . . . . . . . . . . . . . . . . . . . 13 3.2.1. Node Descriptors . . . . . . . . . . . . . . . . . . 11
3.2.2. Link Descriptors . . . . . . . . . . . . . . . . . . . 17 3.2.2. Link Descriptors . . . . . . . . . . . . . . . . . . 15
3.2.3. Prefix Descriptors . . . . . . . . . . . . . . . . . . 18 3.2.3. Prefix Descriptors . . . . . . . . . . . . . . . . . 16
3.3. The LINK_STATE Attribute . . . . . . . . . . . . . . . . . 20 3.3. The BGP-LS Attribute . . . . . . . . . . . . . . . . . . 18
3.3.1. Node Attribute TLVs . . . . . . . . . . . . . . . . . 20 3.3.1. Node Attribute TLVs . . . . . . . . . . . . . . . . . 18
3.3.2. Link Attribute TLVs . . . . . . . . . . . . . . . . . 23 3.3.2. Link Attribute TLVs . . . . . . . . . . . . . . . . . 22
3.3.3. Prefix Attribute TLVs . . . . . . . . . . . . . . . . 27 3.3.3. Prefix Attribute TLVs . . . . . . . . . . . . . . . . 25
3.4. BGP Next Hop Information . . . . . . . . . . . . . . . . . 30 3.4. BGP Next Hop Information . . . . . . . . . . . . . . . . 29
3.5. Inter-AS Links . . . . . . . . . . . . . . . . . . . . . . 31 3.5. Inter-AS Links . . . . . . . . . . . . . . . . . . . . . 29
3.6. Router-ID Anchoring Example: ISO Pseudonode . . . . . . . 31 3.6. Router-ID Anchoring Example: ISO Pseudonode . . . . . . . 29
3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration . . 32 3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration . 30
4. Link to Path Aggregation . . . . . . . . . . . . . . . . . . . 32 4. Link to Path Aggregation . . . . . . . . . . . . . . . . . . 31
4.1. Example: No Link Aggregation . . . . . . . . . . . . . . . 33 4.1. Example: No Link Aggregation . . . . . . . . . . . . . . 31
4.2. Example: ASBR to ASBR Path Aggregation . . . . . . . . . . 33 4.2. Example: ASBR to ASBR Path Aggregation . . . . . . . . . 31
4.3. Example: Multi-AS Path Aggregation . . . . . . . . . . . . 34 4.3. Example: Multi-AS Path Aggregation . . . . . . . . . . . 32
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 32
6. Manageability Considerations . . . . . . . . . . . . . . . . . 34 6. Manageability Considerations . . . . . . . . . . . . . . . . 33
6.1. Operational Considerations . . . . . . . . . . . . . . . . 35 6.1. Operational Considerations . . . . . . . . . . . . . . . 33
6.1.1. Operations . . . . . . . . . . . . . . . . . . . . . . 35 6.1.1. Operations . . . . . . . . . . . . . . . . . . . . . 33
6.1.2. Installation and Initial Setup . . . . . . . . . . . . 35 6.1.2. Installation and Initial Setup . . . . . . . . . . . 33
6.1.3. Migration Path . . . . . . . . . . . . . . . . . . . . 35 6.1.3. Migration Path . . . . . . . . . . . . . . . . . . . 34
6.1.4. Requirements on Other Protocols and Functional 6.1.4. Requirements on Other Protocols and Functional
Components . . . . . . . . . . . . . . . . . . . . . . 35 Components . . . . . . . . . . . . . . . . . . . . . 34
6.1.5. Impact on Network Operation . . . . . . . . . . . . . 35 6.1.5. Impact on Network Operation . . . . . . . . . . . . . 34
6.1.6. Verifying Correct Operation . . . . . . . . . . . . . 36 6.1.6. Verifying Correct Operation . . . . . . . . . . . . . 34
6.2. Management Considerations . . . . . . . . . . . . . . . . 36 6.2. Management Considerations . . . . . . . . . . . . . . . . 34
6.2.1. Management Information . . . . . . . . . . . . . . . . 36 6.2.1. Management Information . . . . . . . . . . . . . . . 34
6.2.2. Fault Management . . . . . . . . . . . . . . . . . . . 36 6.2.2. Fault Management . . . . . . . . . . . . . . . . . . 34
6.2.3. Configuration Management . . . . . . . . . . . . . . . 36 6.2.3. Configuration Management . . . . . . . . . . . . . . 34
6.2.4. Accounting Management . . . . . . . . . . . . . . . . 36 6.2.4. Accounting Management . . . . . . . . . . . . . . . . 35
6.2.5. Performance Management . . . . . . . . . . . . . . . . 36 6.2.5. Performance Management . . . . . . . . . . . . . . . 35
6.2.6. Security Management . . . . . . . . . . . . . . . . . 37 6.2.6. Security Management . . . . . . . . . . . . . . . . . 35
7. TLV/Sub-TLV Code Points Summary . . . . . . . . . . . . . . . 37 7. TLV/Sub-TLV Code Points Summary . . . . . . . . . . . . . . . 35
8. Security Considerations . . . . . . . . . . . . . . . . . . . 39 8. Security Considerations . . . . . . . . . . . . . . . . . . . 37
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 39 9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 37
10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 39 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 38
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 40 11. References . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1. Normative References . . . . . . . . . . . . . . . . . . . 40 11.1. Normative References . . . . . . . . . . . . . . . . . . 38
11.2. Informative References . . . . . . . . . . . . . . . . . . 41 11.2. Informative References . . . . . . . . . . . . . . . . . 39
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 42
1. Introduction 1. Introduction
The contents of a Link State Database (LSDB) or a Traffic Engineering The contents of a Link State Database (LSDB) or a Traffic Engineering
Database (TED) has the scope of an IGP area. Some applications, such Database (TED) has the scope of an IGP area. Some applications, such
as end-to-end Traffic Engineering (TE), would benefit from visibility as end-to-end Traffic Engineering (TE), would benefit from visibility
outside one area or Autonomous System (AS) in order to make better outside one area or Autonomous System (AS) in order to make better
decisions. decisions.
The IETF has defined the Path Computation Element (PCE) [RFC4655] as The IETF has defined the Path Computation Element (PCE) [RFC4655] as
skipping to change at page 6, line 5 skipping to change at page 4, line 26
bandwidth, reservable bandwidth, per CoS class reservation state, bandwidth, reservable bandwidth, per CoS class reservation state,
preemption and Shared Risk Link Groups (SRLG). The router's BGP preemption and Shared Risk Link Groups (SRLG). The router's BGP
process can retrieve topology from these LSDBs and distribute it to a process can retrieve topology from these LSDBs and distribute it to a
consumer, either directly or via a peer BGP Speaker (typically a consumer, either directly or via a peer BGP Speaker (typically a
dedicated Route Reflector), using the encoding specified in this dedicated Route Reflector), using the encoding specified in this
document. document.
The collection of Link State and TE link state information and its The collection of Link State and TE link state information and its
distribution to consumers is shown in the following figure. distribution to consumers is shown in the following figure.
+-----------+ +-----------+
| Consumer | | Consumer |
+-----------+ +-----------+
^ ^
| |
+-----------+ +-----------+
| BGP | +-----------+ | BGP | +-----------+
| Speaker | | Consumer | | Speaker | | Consumer |
+-----------+ +-----------+ +-----------+ +-----------+
^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | |
+---------------+ | +-------------------+ | +---------------+ | +-------------------+ |
| | | | | | | |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| BGP | | BGP | | BGP | | BGP | | BGP | | BGP |
| Speaker | | Speaker | . . . | Speaker | | Speaker | | Speaker | . . . | Speaker |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+
^ ^ ^ ^ ^ ^
| | | | | |
IGP IGP IGP IGP IGP IGP
Figure 1: TE Link State info collection Figure 1: TE Link State info collection
A BGP Speaker may apply configurable policy to the information that A BGP Speaker may apply configurable policy to the information that
it distributes. Thus, it may distribute the real physical topology it distributes. Thus, it may distribute the real physical topology
from the LSDB or the TED. Alternatively, it may create an abstracted from the LSDB or the TED. Alternatively, it may create an abstracted
topology, where virtual, aggregated nodes are connected by virtual topology, where virtual, aggregated nodes are connected by virtual
paths. Aggregated nodes can be created, for example, out of multiple paths. Aggregated nodes can be created, for example, out of multiple
routers in a POP. Abstracted topology can also be a mix of physical routers in a POP. Abstracted topology can also be a mix of physical
and virtual nodes and physical and virtual links. Furthermore, the and virtual nodes and physical and virtual links. Furthermore, the
skipping to change at page 7, line 25 skipping to change at page 5, line 44
need to segment their core networks into distinct areas, but which need to segment their core networks into distinct areas, but which
still want to take advantage of MPLS-TE. still want to take advantage of MPLS-TE.
Previous solutions used per-domain path computation [RFC5152]. The Previous solutions used per-domain path computation [RFC5152]. The
source router could only compute the path for the first area because source router could only compute the path for the first area because
the router only has full topological visibility for the first area the router only has full topological visibility for the first area
along the path, but not for subsequent areas. Per-domain path along the path, but not for subsequent areas. Per-domain path
computation uses a technique called "loose-hop-expansion" [RFC3209], computation uses a technique called "loose-hop-expansion" [RFC3209],
and selects the exit ABR and other ABRs or AS Border Routers (ASBRs) and selects the exit ABR and other ABRs or AS Border Routers (ASBRs)
using the IGP computed shortest path topology for the remainder of using the IGP computed shortest path topology for the remainder of
the path. This may lead to sub-optimal paths, makes alternate/ the path. This may lead to sub-optimal paths, makes alternate/back-
back-up path computation hard, and might result in no TE path being up path computation hard, and might result in no TE path being found
found when one really does exist. when one really does exist.
The PCE presents a computation server that may have visibility into The PCE presents a computation server that may have visibility into
more than one IGP area or AS, or may cooperate with other PCEs to more than one IGP area or AS, or may cooperate with other PCEs to
perform distributed path computation. The PCE obviously needs access perform distributed path computation. The PCE obviously needs access
to the TED for the area(s) it serves, but [RFC4655] does not describe to the TED for the area(s) it serves, but [RFC4655] does not describe
how this is achieved. Many implementations make the PCE a passive how this is achieved. Many implementations make the PCE a passive
participant in the IGP so that it can learn the latest state of the participant in the IGP so that it can learn the latest state of the
network, but this may be sub-optimal when the network is subject to a network, but this may be sub-optimal when the network is subject to a
high degree of churn, or when the PCE is responsible for multiple high degree of churn, or when the PCE is responsible for multiple
areas. areas.
The following figure shows how a PCE can get its TED information The following figure shows how a PCE can get its TED information
using the mechanism described in this document. using the mechanism described in this document.
+----------+ +---------+ +----------+ +---------+
| ----- | | BGP | | ----- | | BGP |
| | TED |<-+-------------------------->| Speaker | | | TED |<-+-------------------------->| Speaker |
| ----- | TED synchronization | | | ----- | TED synchronization | |
| | | mechanism: +---------+ | | | mechanism: +---------+
| | | BGP with Link-State NLRI | | | BGP with Link-State NLRI
| v | | v |
| ----- | | ----- |
| | PCE | | | | PCE | |
| ----- | | ----- |
+----------+ +----------+
^ ^
| Request/ | Request/
| Response | Response
v v
Service +----------+ Signaling +----------+ Service +----------+ Signaling +----------+
Request | Head-End | Protocol | Adjacent | Request | Head-End | Protocol | Adjacent |
-------->| Node |<------------>| Node | -------->| Node |<------------>| Node |
+----------+ +----------+ +----------+ +----------+
Figure 2: External PCE node using a TED synchronization mechanism Figure 2: External PCE node using a TED synchronization mechanism
The mechanism in this document allows the necessary TED information The mechanism in this document allows the necessary TED information
to be collected from the IGP within the network, filtered according to be collected from the IGP within the network, filtered according
to configurable policy, and distributed to the PCE as necessary. to configurable policy, and distributed to the PCE as necessary.
2.2. ALTO Server Network API 2.2. ALTO Server Network API
An ALTO Server [RFC5693] is an entity that generates an abstracted An ALTO Server [RFC5693] is an entity that generates an abstracted
skipping to change at page 9, line 10 skipping to change at page 7, line 19
document provides a single interface through which an ALTO Server can document provides a single interface through which an ALTO Server can
retrieve all the necessary prefix and network topology data from the retrieve all the necessary prefix and network topology data from the
underlying network. Note an ALTO Server can use other mechanisms to underlying network. Note an ALTO Server can use other mechanisms to
get network data, for example, peering with multiple IGP and BGP get network data, for example, peering with multiple IGP and BGP
Speakers. Speakers.
The following figure shows how an ALTO Server can get network The following figure shows how an ALTO Server can get network
topology information from the underlying network using the mechanism topology information from the underlying network using the mechanism
described in this document. described in this document.
+--------+ +--------+
| Client |<--+ | Client |<--+
+--------+ | +--------+ |
| ALTO +--------+ BGP with +---------+ | ALTO +--------+ BGP with +---------+
+--------+ | Protocol | ALTO | Link-State NLRI | BGP | +--------+ | Protocol | ALTO | Link-State NLRI | BGP |
| Client |<--+------------| Server |<----------------| Speaker | | Client |<--+------------| Server |<----------------| Speaker |
+--------+ | | | | | +--------+ | | | | |
| +--------+ +---------+ | +--------+ +---------+
+--------+ | +--------+ |
| Client |<--+ | Client |<--+
+--------+ +--------+
Figure 3: ALTO Server using network topology information Figure 3: ALTO Server using network topology information
3. Carrying Link State Information in BGP 3. Carrying Link State Information in BGP
This specification contains two parts: definition of a new BGP NLRI This specification contains two parts: definition of a new BGP NLRI
that describes links, nodes and prefixes comprising IGP link state that describes links, nodes and prefixes comprising IGP link state
information, and definition of a new BGP path attribute (BGP-LS information, and definition of a new BGP path attribute (BGP-LS
attribute) that carries link, node and prefix properties and attribute) that carries link, node and prefix properties and
attributes, such as the link and prefix metric or auxiliary Router- attributes, such as the link and prefix metric or auxiliary Router-
IDs of nodes, etc. IDs of nodes, etc.
3.1. TLV Format 3.1. TLV Format
Information in the new link state NLRIs and attributes is encoded in Information in the new Link-State NLRIs and attributes is encoded in
Type/Length/Value triplets. The TLV format is shown in Figure 4. Type/Length/Value triplets. The TLV format is shown in Figure 4.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Value (variable) // // Value (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: TLV format Figure 4: TLV format
The Length field defines the length of the value portion in octets The Length field defines the length of the value portion in octets
(thus a TLV with no value portion would have a length of zero). The (thus a TLV with no value portion would have a length of zero). The
TLV is not padded to four-octet alignment. Unrecognized types are TLV is not padded to four-octet alignment. Unrecognized types are
preserved and propagated. In order to compare NLRIs with unknown preserved and propagated. In order to compare NLRIs with unknown
TLVs all TLVs MUST be ordered in ascending order. If there are more TLVs all TLVs MUST be ordered in ascending order. If there are more
TLVs of the same type, then the TLVs MUST be ordered in ascending TLVs of the same type, then the TLVs MUST be ordered in ascending
order of the TLV value within the set of TLVs with the same type. order of the TLV value within the set of TLVs with the same type.
All TLVs that are not specified as mandatory are considered optional. All TLVs that are not specified as mandatory are considered optional.
3.2. The Link State NLRI 3.2. The Link-State NLRI
The MP_REACH and MP_UNREACH attributes are BGP's containers for The MP_REACH and MP_UNREACH attributes are BGP's containers for
carrying opaque information. Each Link State NLRI describes either a carrying opaque information. Each Link-State NLRI describes either a
node, a link or a prefix. node, a link or a prefix.
All non-VPN link, node and prefix information SHALL be encoded using All non-VPN link, node and prefix information SHALL be encoded using
AFI 16388 / SAFI 71. VPN link, node and prefix information SHALL be AFI 16388 / SAFI 71. VPN link, node and prefix information SHALL be
encoded using AFI 16388 / SAFI 128. encoded using AFI 16388 / SAFI 128.
In order for two BGP speakers to exchange Link-State NLRI, they MUST In order for two BGP speakers to exchange Link-State NLRI, they MUST
use BGP Capabilities Advertisement to ensure that they both are use BGP Capabilities Advertisement to ensure that they both are
capable of properly processing such NLRI. This is done as specified capable of properly processing such NLRI. This is done as specified
in [RFC4760], by using capability code 1 (multi-protocol BGP), with in [RFC4760], by using capability code 1 (multi-protocol BGP), with
an AFI 16388 / SAFI 71 and AFI 16388 / SAFI 128 for the VPN flavor. an AFI 16388 / SAFI 71 and AFI 16388 / SAFI 128 for the VPN flavor.
The format of the Link State NLRI is shown in the following figure. The format of the Link-State NLRI is shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NLRI Type | Total NLRI Length | | NLRI Type | Total NLRI Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
// Link-State NLRI (variable) // // Link-State NLRI (variable) //
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Link State AFI 16388 / SAFI 71 NLRI Format Figure 5: Link-State AFI 16388 / SAFI 71 NLRI Format
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NLRI Type | Total NLRI Length | | NLRI Type | Total NLRI Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
+ Route Distinguisher + + Route Distinguisher +
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
// Link-State NLRI (variable) // // Link-State NLRI (variable) //
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Link State VPN AFI 16388 / SAFI 128 NLRI Format Figure 6: Link-State VPN AFI 16388 / SAFI 128 NLRI Format
The 'Total NLRI Length' field contains the cumulative length, in The 'Total NLRI Length' field contains the cumulative length, in
octets, of rest of the NLRI not including the NLRI Type field or octets, of rest of the NLRI not including the NLRI Type field or
itself. For VPN applications it also includes the length of the itself. For VPN applications it also includes the length of the
Route Distinguisher. Route Distinguisher.
The 'NLRI Type' field can contain one of the following values: The 'NLRI Type' field can contain one of the following values:
Type = 1: Node NLRI Type = 1: Node NLRI
Type = 2: Link NLRI Type = 2: Link NLRI
Type = 3: IPv4 Topology Prefix NLRI Type = 3: IPv4 Topology Prefix NLRI
Type = 4: IPv6 Topology Prefix NLRI Type = 4: IPv6 Topology Prefix NLRI
The Node NLRI (NLRI Type = 1) is shown in the following figure. The Node NLRI (NLRI Type = 1) is shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Protocol-ID | | Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Identifier |
| (64 bits) | | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Local Node Descriptors (variable) // // Local Node Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: The Node NLRI format Figure 7: The Node NLRI format
The Link NLRI (NLRI Type = 2) is shown in the following figure. The Link NLRI (NLRI Type = 2) is shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Protocol-ID | | Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Identifier |
| (64 bits) | | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Local Node Descriptors (variable) // // Local Node Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Remote Node Descriptors (variable) // // Remote Node Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Link Descriptors (variable) // // Link Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: The Link NLRI format Figure 8: The Link NLRI format
The IPv4 and IPv6 Prefix NLRIs (NLRI Type = 3 and Type = 4) use the The IPv4 and IPv6 Prefix NLRIs (NLRI Type = 3 and Type = 4) use the
same format as shown in the following figure. same format as shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Protocol-ID | | Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Identifier |
| (64 bits) | | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Local Node Descriptor (variable) // // Local Node Descriptor (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Prefix Descriptors (variable) // // Prefix Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: The IPv4/IPv6 Topology Prefix NLRI format Figure 9: The IPv4/IPv6 Topology Prefix NLRI format
The 'Protocol-ID' field can contain one of the following values: The 'Protocol-ID' field can contain one of the following values:
Protocol-ID = 0: Unknown, The source of NLRI information could not Protocol-ID = 0: Unknown, The source of NLRI information could not
be determined be determined
Protocol-ID = 1: IS-IS Level 1, The NLRI information has been Protocol-ID = 1: IS-IS Level 1, The NLRI information has been
sourced by IS-IS Level 1 sourced by IS-IS Level 1
skipping to change at page 13, line 26 skipping to change at page 11, line 23
used to identify the "routing universe" where the NLRI belongs. The used to identify the "routing universe" where the NLRI belongs. The
NLRIs representing IGP objects (nodes, links or prefixes) from the NLRIs representing IGP objects (nodes, links or prefixes) from the
same routing universe MUST have the same 'Identifier' value; NLRIs same routing universe MUST have the same 'Identifier' value; NLRIs
with different 'Identifier' values MUST be considered to be from with different 'Identifier' values MUST be considered to be from
different routing universes. Table Table 1 lists the 'Identifier' different routing universes. Table Table 1 lists the 'Identifier'
values that are defined as well-known in this draft. values that are defined as well-known in this draft.
+------------+---------------------+ +------------+---------------------+
| Identifier | Routing Universe | | Identifier | Routing Universe |
+------------+---------------------+ +------------+---------------------+
| 0 | L3 packet topology | | 0 | L3 packet topology |
| 1 | L1 optical topology | | 1 | L1 optical topology |
+------------+---------------------+ +------------+---------------------+
Table 1: Well-known Instance Identifiers Table 1: Well-known Instance Identifiers
Each Node Descriptor and Link Descriptor consists of one or more TLVs Each Node Descriptor and Link Descriptor consists of one or more TLVs
described in the following sections. described in the following sections.
3.2.1. Node Descriptors 3.2.1. Node Descriptors
Each link is anchored by a pair of Router-IDs that are used by the Each link is anchored by a pair of Router-IDs that are used by the
underlying IGP, namely, 48 Bit ISO System-ID for IS-IS and 32 bit underlying IGP, namely, 48 Bit ISO System-ID for IS-IS and 32 bit
Router-ID for OSPFv2 and OSPFv3. An IGP may use one or more Router-ID for OSPFv2 and OSPFv3. An IGP may use one or more
additional auxiliary Router-IDs, mainly for traffic engineering additional auxiliary Router-IDs, mainly for traffic engineering
purposes. For example, IS-IS may have one or more IPv4 and IPv6 TE purposes. For example, IS-IS may have one or more IPv4 and IPv6 TE
Router-IDs [RFC5305], [RFC6119]. These auxiliary Router-IDs MUST be Router-IDs [RFC5305], [RFC6119]. These auxiliary Router-IDs MUST be
included in the link attribute described in Section Section 3.3.2. included in the link attribute described in Section Section 3.3.2.
It is desirable that the Router-ID assignments inside the Node It is desirable that the Router-ID assignments inside the Node
Descriptor are globally unique. However there may be Router-ID Descriptor are globally unique. However there may be Router-ID
spaces (e.g. ISO) where no global registry exists, or worse, Router- spaces (e.g. ISO) where no global registry exists, or worse, Router-
IDs have been allocated following private-IP RFC 1918 [RFC1918] IDs have been allocated following private-IP RFC 1918 [RFC1918]
allocation. We use Autonomous System (AS) Number and BGP-LS allocation. We use Autonomous System (AS) Number and BGP-LS
Identifier in order to disambiguate the Router-IDs, as described in Identifier in order to disambiguate the Router-IDs, as described in
Section 3.2.1.1. Section 3.2.1.1.
3.2.1.1. Globally Unique Node/Link/Prefix Identifiers 3.2.1.1. Globally Unique Node/Link/Prefix Identifiers
One problem that needs to be addressed is the ability to identify an One problem that needs to be addressed is the ability to identify an
IGP node globally (by "global", we mean within the BGP-LS database IGP node globally (by "global", we mean within the BGP-LS database
collected by all BGP-LS speakers that talk to each other). This can collected by all BGP-LS speakers that talk to each other). This can
be expressed through the following two requirements: be expressed through the following two requirements:
(A) The same node must not be represented by two keys (otherwise one (A) The same node must not be represented by two keys (otherwise one
node will look like two nodes). node will look like two nodes).
(B) Two different nodes must not be represented by the same key (B) Two different nodes must not be represented by the same key
(otherwise, two nodes will look like one node). (otherwise, two nodes will look like one node).
skipping to change at page 14, line 39 skipping to change at page 12, line 36
such that global uniqueness of the NLRI is ensured. such that global uniqueness of the NLRI is ensured.
3.2.1.2. Local Node Descriptors 3.2.1.2. Local Node Descriptors
The Local Node Descriptors TLV contains Node Descriptors for the node The Local Node Descriptors TLV contains Node Descriptors for the node
anchoring the local end of the link. This is a mandatory TLV in all anchoring the local end of the link. This is a mandatory TLV in all
three types of NLRIs. The length of this TLV is variable. The value three types of NLRIs. The length of this TLV is variable. The value
contains one or more Node Descriptor Sub-TLVs defined in contains one or more Node Descriptor Sub-TLVs defined in
Section 3.2.1.4. Section 3.2.1.4.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
// Node Descriptor Sub-TLVs (variable) // // Node Descriptor Sub-TLVs (variable) //
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Local Node Descriptors TLV format Figure 10: Local Node Descriptors TLV format
3.2.1.3. Remote Node Descriptors 3.2.1.3. Remote Node Descriptors
The Remote Node Descriptors contains Node Descriptors for the node The Remote Node Descriptors contains Node Descriptors for the node
anchoring the remote end of the link. This is a mandatory TLV for anchoring the remote end of the link. This is a mandatory TLV for
link NLRIs. The length of this TLV is variable. The value contains link NLRIs. The length of this TLV is variable. The value contains
one or more Node Descriptor Sub-TLVs defined in Section 3.2.1.4. one or more Node Descriptor Sub-TLVs defined in Section 3.2.1.4.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | |
// Node Descriptor Sub-TLVs (variable) // // Node Descriptor Sub-TLVs (variable) //
| | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Remote Node Descriptors TLV format Figure 11: Remote Node Descriptors TLV format
3.2.1.4. Node Descriptor Sub-TLVs 3.2.1.4. Node Descriptor Sub-TLVs
The Node Descriptor Sub-TLV type codepoints and lengths are listed in The Node Descriptor Sub-TLV type codepoints and lengths are listed in
the following table: the following table:
+--------------------+-------------------+----------+ +--------------------+-------------------+----------+
| Sub-TLV Code Point | Description | Length | | Sub-TLV Code Point | Description | Length |
+--------------------+-------------------+----------+ +--------------------+-------------------+----------+
| 512 | Autonomous System | 4 | | 512 | Autonomous System | 4 |
| 513 | BGP-LS Identifier | 4 | | 513 | BGP-LS Identifier | 4 |
| 514 | Area-ID | 4 | | 514 | Area-ID | 4 |
| 515 | IGP Router-ID | Variable | | 515 | IGP Router-ID | Variable |
+--------------------+-------------------+----------+ +--------------------+-------------------+----------+
Table 2: Node Descriptor Sub-TLVs Table 2: Node Descriptor Sub-TLVs
The sub-TLV values in Node Descriptor TLVs are defined as follows: The sub-TLV values in Node Descriptor TLVs are defined as follows:
Autonomous System: opaque value (32 Bit AS Number) Autonomous System: opaque value (32 Bit AS Number)
BGP-LS Identifier: opaque value (32 Bit ID). In conjunction with BGP-LS Identifier: opaque value (32 Bit ID). In conjunction with
ASN, uniquely identifies the BGP-LS domain. The combination of ASN, uniquely identifies the BGP-LS domain. The combination of
skipping to change at page 17, line 5 skipping to change at page 15, line 5
Multi-Topology IDs for a link, node or prefix. Multi-Topology IDs for a link, node or prefix.
Semantics of the IS-IS MT-ID are defined in RFC5120, Section 7.2 Semantics of the IS-IS MT-ID are defined in RFC5120, Section 7.2
[RFC5120]. Semantics of the OSPF MT-ID are defined in RFC4915, [RFC5120]. Semantics of the OSPF MT-ID are defined in RFC4915,
Section 3.7 [RFC4915]. If the value in the MT-ID TLV is derived from Section 3.7 [RFC4915]. If the value in the MT-ID TLV is derived from
OSPF, then the upper 9 bits MUST be set to 0. Bits R are reserved, OSPF, then the upper 9 bits MUST be set to 0. Bits R are reserved,
SHOULD be set to 0 when originated and ignored on receipt. SHOULD be set to 0 when originated and ignored on receipt.
The format of the MT-ID TLV is shown in the following figure. The format of the MT-ID TLV is shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length=2*n | | Type | Length=2*n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R R R R| Multi-Topology ID 1 | .... // |R R R R| Multi-Topology ID 1 | .... //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// .... |R R R R| Multi-Topology ID n | // .... |R R R R| Multi-Topology ID n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Multi-Topology ID TLV format Figure 12: Multi-Topology ID TLV format
where Type is 263, Length is 2*n and n is the number of MT-IDs where Type is 263, Length is 2*n and n is the number of MT-IDs
carried in the TLV. carried in the TLV.
The MT-ID TLV MAY be present in a Link Descriptor, a Prefix The MT-ID TLV MAY be present in a Link Descriptor, a Prefix
Descriptor, or in the BGP-LS attribute of a node NLRI. In Link or Descriptor, or in the BGP-LS attribute of a node NLRI. In Link or
Prefix Descriptor, only one MT-ID TLV containing only the MT-ID of Prefix Descriptor, only one MT-ID TLV containing only the MT-ID of
the topology where the link or the prefix belongs is allowed. In the the topology where the link or the prefix belongs is allowed. In the
skipping to change at page 18, line 5 skipping to change at page 16, line 5
The format and semantics of the 'value' fields in most 'Link The format and semantics of the 'value' fields in most 'Link
Descriptor' TLVs correspond to the format and semantics of value Descriptor' TLVs correspond to the format and semantics of value
fields in IS-IS Extended IS Reachability sub-TLVs, defined in fields in IS-IS Extended IS Reachability sub-TLVs, defined in
[RFC5305], [RFC5307] and [RFC6119]. Although the encodings for 'Link [RFC5305], [RFC5307] and [RFC6119]. Although the encodings for 'Link
Descriptor' TLVs were originally defined for IS-IS, the TLVs can Descriptor' TLVs were originally defined for IS-IS, the TLVs can
carry data sourced either by IS-IS or OSPF. carry data sourced either by IS-IS or OSPF.
The following TLVs are valid as Link Descriptors in the Link NLRI: The following TLVs are valid as Link Descriptors in the Link NLRI:
+-----------+---------------------+---------------+-----------------+ +------------+--------------------+---------------+-----------------+
| TLV Code | Description | IS-IS | Value defined | | TLV Code | Description | IS-IS TLV | Value defined |
| Point | | TLV/Sub-TLV | in: | | Point | | /Sub-TLV | in: |
+-----------+---------------------+---------------+-----------------+ +------------+--------------------+---------------+-----------------+
| 258 | Link Local/Remote | 22/4 | [RFC5307]/1.1 | | 258 | Link Local/Remote | 22/4 | [RFC5307]/1.1 |
| | Identifiers | | | | | Identifiers | | |
| 259 | IPv4 interface | 22/6 | [RFC5305]/3.2 | | 259 | IPv4 interface | 22/6 | [RFC5305]/3.2 |
| | address | | | | | address | | |
| 260 | IPv4 neighbor | 22/8 | [RFC5305]/3.3 | | 260 | IPv4 neighbor | 22/8 | [RFC5305]/3.3 |
| | address | | | | | address | | |
| 261 | IPv6 interface | 22/12 | [RFC6119]/4.2 | | 261 | IPv6 interface | 22/12 | [RFC6119]/4.2 |
| | address | | | | | address | | |
| 262 | IPv6 neighbor | 22/13 | [RFC6119]/4.3 | | 262 | IPv6 neighbor | 22/13 | [RFC6119]/4.3 |
| | address | | | | | address | | |
| 263 | Multi-Topology | --- | Section 3.2.1.5 | | 263 | Multi-Topology | --- | Section 3.2.1.5 |
| | Identifier | | | | | Identifier | | |
+-----------+---------------------+---------------+-----------------+ +------------+--------------------+---------------+-----------------+
Table 3: Link Descriptor TLVs Table 3: Link Descriptor TLVs
3.2.3. Prefix Descriptors 3.2.3. Prefix Descriptors
The 'Prefix Descriptor' field is a set of Type/Length/Value (TLV) The 'Prefix Descriptor' field is a set of Type/Length/Value (TLV)
triplets. 'Prefix Descriptor' TLVs uniquely identify an IPv4 or IPv6 triplets. 'Prefix Descriptor' TLVs uniquely identify an IPv4 or IPv6
Prefix originated by a Node. The following TLVs are valid as Prefix Prefix originated by a Node. The following TLVs are valid as Prefix
Descriptors in the IPv4/IPv6 Prefix NLRI: Descriptors in the IPv4/IPv6 Prefix NLRI:
+--------------+-----------------------+----------+-----------------+ +-----------+--------------------------+------------+---------------+
| TLV Code | Description | Length | Value defined | | TLV Code | Description | Length | Value defined |
| Point | | | in: | | Point | | | in: |
+--------------+-----------------------+----------+-----------------+ +-----------+--------------------------+------------+---------------+
| 263 | Multi-Topology | variable | Section 3.2.1.5 | | 263 | Multi-Topology | variable | Section |
| | Identifier | | | | | Identifier | | 3.2.1.5 |
| 264 | OSPF Route Type | 1 | Section 3.2.3.1 | | 264 | OSPF Route Type | 1 | Section |
| 265 | IP Reachability | variable | Section 3.2.3.2 | | | | | 3.2.3.1 |
| | Information | | | | 265 | IP Reachability | variable | Section |
+--------------+-----------------------+----------+-----------------+ | | Information | | 3.2.3.2 |
+-----------+--------------------------+------------+---------------+
Table 4: Prefix Descriptor TLVs Table 4: Prefix Descriptor TLVs
3.2.3.1. OSPF Route Type 3.2.3.1. OSPF Route Type
OSPF Route Type is an optional TLV that MAY be present in Prefix OSPF Route Type is an optional TLV that MAY be present in Prefix
NLRIs. It is used to identify the OSPF route-type of the prefix. It NLRIs. It is used to identify the OSPF route-type of the prefix. It
is used when an OSPF prefix is advertised in the OSPF domain with is used when an OSPF prefix is advertised in the OSPF domain with
multiple different route-types. The Route Type TLV allows to multiple different route-types. The Route Type TLV allows to
discriminate these advertisements. The format of the OSPF Route Type discriminate these advertisements. The format of the OSPF Route Type
TLV is shown in the following figure. TLV is shown in the following figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route Type | | Route Type |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
Figure 13: OSPF Route Type TLV Format Figure 13: OSPF Route Type TLV Format
where the Type and Length fields of the TLV are defined in Table 4. where the Type and Length fields of the TLV are defined in Table 4.
The OSPF Route Type field values are defined in the OSPF protocol, The OSPF Route Type field values are defined in the OSPF protocol,
and can be one of the following: and can be one of the following:
Intra-Area (0x1) Intra-Area (0x1)
Inter-Area (0x2) Inter-Area (0x2)
skipping to change at page 19, line 41 skipping to change at page 18, line 5
3.2.3.2. IP Reachability Information 3.2.3.2. IP Reachability Information
The IP Reachability Information is a mandatory TLV that contains one The IP Reachability Information is a mandatory TLV that contains one
IP address prefix (IPv4 or IPv6) originally advertised in the IGP IP address prefix (IPv4 or IPv6) originally advertised in the IGP
topology. Its purpose is to glue a particular BGP service NLRI vi topology. Its purpose is to glue a particular BGP service NLRI vi
virtue of its BGP next-hop to a given Node in the LSDB. A router virtue of its BGP next-hop to a given Node in the LSDB. A router
SHOULD advertise an IP Prefix NLRI for each of its BGP Next-hops. SHOULD advertise an IP Prefix NLRI for each of its BGP Next-hops.
The format of the IP Reachability Information TLV is shown in the The format of the IP Reachability Information TLV is shown in the
following figure: following figure:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | IP Prefix (variable) // | Prefix Length | IP Prefix (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: IP Reachability Information TLV Format Figure 14: IP Reachability Information TLV Format
The Type and Length fields of the TLV are defined in Table 4. The The Type and Length fields of the TLV are defined in Table 4. The
following two fields determine the address-family reachability following two fields determine the address-family reachability
information. The 'Prefix Length' field contains the length of the information. The 'Prefix Length' field contains the length of the
prefix in bits. The 'IP Prefix' field contains the most significant prefix in bits. The 'IP Prefix' field contains the most significant
octets of the prefix; i.e., 1 octet for prefix length 1 up to 8, 2 octets of the prefix; i.e., 1 octet for prefix length 1 up to 8, 2
octets for prefix length 9 to 16, 3 octets for prefix length 17 up to octets for prefix length 9 to 16, 3 octets for prefix length 17 up to
24 and 4 octets for prefix length 25 up to 32, etc. 24 and 4 octets for prefix length 25 up to 32, etc.
3.3. The LINK_STATE Attribute 3.3. The BGP-LS Attribute
This is an optional, non-transitive BGP attribute that is used to This is an optional, non-transitive BGP attribute that is used to
carry link, node and prefix parameters and attributes. It is defined carry link, node and prefix parameters and attributes. It is defined
as a set of Type/Length/Value (TLV) triplets, described in the as a set of Type/Length/Value (TLV) triplets, described in the
following section. This attribute SHOULD only be included with Link following section. This attribute SHOULD only be included with Link-
State NLRIs. This attribute MUST be ignored for all other address- State NLRIs. This attribute MUST be ignored for all other address-
families. families.
3.3.1. Node Attribute TLVs 3.3.1. Node Attribute TLVs
Node attribute TLVs are the TLVs that may be encoded in the BGP-LS Node attribute TLVs are the TLVs that may be encoded in the BGP-LS
attribute with a node NLRI. The following node attribute TLVs are attribute with a node NLRI. The following node attribute TLVs are
defined: defined:
+--------------+-----------------------+----------+-----------------+ +-----------+----------------------+------------+-------------------+
| TLV Code | Description | Length | Value defined | | TLV Code | Description | Length | Value defined in: |
| Point | | | in: | | Point | | | |
+--------------+-----------------------+----------+-----------------+ +-----------+----------------------+------------+-------------------+
| 263 | Multi-Topology | variable | Section 3.2.1.5 | | 263 | Multi-Topology | variable | Section 3.2.1.5 |
| | Identifier | | | | | Identifier | | |
| 1024 | Node Flag Bits | 1 | Section 3.3.1.1 | | 1024 | Node Flag Bits | 1 | Section 3.3.1.1 |
| 1025 | Opaque Node | variable | Section 3.3.1.5 | | 1025 | Opaque Node | variable | Section 3.3.1.5 |
| | Properties | | | | | Properties | | |
| 1026 | Node Name | variable | Section 3.3.1.3 | | 1026 | Node Name | variable | Section 3.3.1.3 |
| 1027 | IS-IS Area Identifier | variable | Section 3.3.1.2 | | 1027 | IS-IS Area | variable | Section 3.3.1.2 |
| 1028 | IPv4 Router-ID of | 4 | [RFC5305]/4.3 | | | Identifier | | |
| | Local Node | | | | 1028 | IPv4 Router-ID of | 4 | [RFC5305]/4.3 |
| 1029 | IPv6 Router-ID of | 16 | [RFC6119]/4.1 | | | Local Node | | |
| | Local Node | | | | 1029 | IPv6 Router-ID of | 16 | [RFC6119]/4.1 |
+--------------+-----------------------+----------+-----------------+ | | Local Node | | |
+-----------+----------------------+------------+-------------------+
Table 5: Node Attribute TLVs Table 5: Node Attribute TLVs
3.3.1.1. Node Flag Bits TLV 3.3.1.1. Node Flag Bits TLV
The Node Flag Bits TLV carries a bit mask describing node attributes. The Node Flag Bits TLV carries a bit mask describing node attributes.
The value is a variable length bit array of flags, where each bit The value is a variable length bit array of flags, where each bit
represents a node capability. represents a node capability.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|O|T|E|A| Reserved| |O|T|E|A| Reserved|
+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+
Figure 15: Node Flag Bits TLV format Figure 15: Node Flag Bits TLV format
The bits are defined as follows: The bits are defined as follows:
+----------+-------------------------+-----------+ +----------+-------------------------+-----------+
| Bit | Description | Reference | | Bit | Description | Reference |
+----------+-------------------------+-----------+ +----------+-------------------------+-----------+
| 'O' | Overload Bit | [RFC1195] | | 'O' | Overload Bit | [RFC1195] |
| 'T' | Attached Bit | [RFC1195] | | 'T' | Attached Bit | [RFC1195] |
| 'E' | External Bit | [RFC2328] | | 'E' | External Bit | [RFC2328] |
| 'A' | ABR Bit | [RFC2328] | | 'A' | ABR Bit | [RFC2328] |
| Reserved | Reserved for future use | | | Reserved | Reserved for future use | |
+----------+-------------------------+-----------+ +----------+-------------------------+-----------+
Table 6: Node Flag Bits Definitions Table 6: Node Flag Bits Definitions
3.3.1.2. IS-IS Area Identifier TLV 3.3.1.2. IS-IS Area Identifier TLV
An IS-IS node can be part of one or more IS-IS areas. Each of these An IS-IS node can be part of one or more IS-IS areas. Each of these
area addresses is carried in the IS-IS Area Identifier TLV. If more area addresses is carried in the IS-IS Area Identifier TLV. If more
than one Area Addresses are present, multiple TLVs are used to encode than one Area Addresses are present, multiple TLVs are used to encode
them. The IS-IS Area Identifier TLV may be present in the LINK_STATE them. The IS-IS Area Identifier TLV may be present in the BGP-LS
attribute only with the Link State Node NLRI. attribute only with the Link-State Node NLRI.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Area Identifier (variable) // // Area Identifier (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: IS-IS Area Identifier TLV Format Figure 16: IS-IS Area Identifier TLV Format
3.3.1.3. Node Name TLV 3.3.1.3. Node Name TLV
The Node Name TLV is optional. Its structure and encoding has been The Node Name TLV is optional. Its structure and encoding has been
borrowed from [RFC5301]. The value field identifies the symbolic borrowed from [RFC5301]. The value field identifies the symbolic
name of the router node. This symbolic name can be the FQDN for the name of the router node. This symbolic name can be the FQDN for the
router, it can be a subset of the FQDN, or it can be any string router, it can be a subset of the FQDN, or it can be any string
operators want to use for the router. The use of FQDN or a subset of operators want to use for the router. The use of FQDN or a subset of
it is strongly recommended. it is strongly recommended.
The Value field is encoded in 7-bit ASCII. If a user-interface for The Value field is encoded in 7-bit ASCII. If a user-interface for
configuring or displaying this field permits Unicode characters, that configuring or displaying this field permits Unicode characters, that
user-interface is responsible for applying the ToASCII and/or user-interface is responsible for applying the ToASCII and/or
ToUnicode algorithm as described in [RFC3490] to achieve the correct ToUnicode algorithm as described in [RFC3490] to achieve the correct
format for transmission or display. format for transmission or display.
Altough [RFC5301] is a IS-IS specific extension, usage of the Node Altough [RFC5301] is a IS-IS specific extension, usage of the Node
Name TLV is possible for all protocols. How a router derives and Name TLV is possible for all protocols. How a router derives and
injects node names for e.g. OSPF nodes, is outside of the scope of injects node names for e.g. OSPF nodes, is outside of the scope of
this document. this document.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Node Name (variable) // // Node Name (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: Node Name format Figure 17: Node Name format
3.3.1.4. Local IPv4/IPv6 Router-ID 3.3.1.4. Local IPv4/IPv6 Router-ID
The local IPv4/IPv6 Router-ID TLVs are used to describe auxiliary The local IPv4/IPv6 Router-ID TLVs are used to describe auxiliary
Router-IDs that the IGP might be using, e.g., for TE and migration Router-IDs that the IGP might be using, e.g., for TE and migration
purposes like correlating a Node-ID between different protocols. If purposes like correlating a Node-ID between different protocols. If
there is more than one auxiliary Router-ID of a given type, then each there is more than one auxiliary Router-ID of a given type, then each
one is encoded in its own TLV. one is encoded in its own TLV.
skipping to change at page 23, line 5 skipping to change at page 21, line 42
originating router shall use this TLV for encoding information originating router shall use this TLV for encoding information
specific to the protocol advertised in the NLRI header Protocol-ID specific to the protocol advertised in the NLRI header Protocol-ID
field or new protocol extensions to the protocol as advertised in the field or new protocol extensions to the protocol as advertised in the
NLRI header Protocol-ID field for which there is no protocol neutral NLRI header Protocol-ID field for which there is no protocol neutral
representation in the BGP link-state NLRI. A router for example representation in the BGP link-state NLRI. A router for example
could use this extension in order to advertise the native protocols could use this extension in order to advertise the native protocols
node attribute TLVs, such as the OSPF Router Informational node attribute TLVs, such as the OSPF Router Informational
Capabilities TLV defined in [RFC4970], or the IGP TE Node Capability Capabilities TLV defined in [RFC4970], or the IGP TE Node Capability
Descriptor TLV described in [RFC5073]. Descriptor TLV described in [RFC5073].
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Opaque node attributes (variable) // // Opaque node attributes (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 18: Opaque Node attribute format Figure 18: Opaque Node attribute format
3.3.2. Link Attribute TLVs 3.3.2. Link Attribute TLVs
Link attribute TLVs are TLVs that may be encoded in the BGP-LS Link attribute TLVs are TLVs that may be encoded in the BGP-LS
attribute with a link NLRI. Each 'Link Attribute' is a Type/Length/ attribute with a link NLRI. Each 'Link Attribute' is a Type/Length/
Value (TLV) triplet formatted as defined in Section 3.1. The format Value (TLV) triplet formatted as defined in Section 3.1. The format
and semantics of the 'value' fields in some 'Link Attribute' TLVs and semantics of the 'value' fields in some 'Link Attribute' TLVs
correspond to the format and semantics of value fields in IS-IS correspond to the format and semantics of value fields in IS-IS
Extended IS Reachability sub-TLVs, defined in [RFC5305] and Extended IS Reachability sub-TLVs, defined in [RFC5305] and
[RFC5307]. Other 'Link Attribute' TLVs are defined in this document. [RFC5307]. Other 'Link Attribute' TLVs are defined in this document.
Although the encodings for 'Link Attribute' TLVs were originally Although the encodings for 'Link Attribute' TLVs were originally
defined for IS-IS, the TLVs can carry data sourced either by IS-IS or defined for IS-IS, the TLVs can carry data sourced either by IS-IS or
OSPF. OSPF.
The following 'Link Attribute' TLVs are are valid in the LINK_STATE The following 'Link Attribute' TLVs are are valid in the LINK_STATE
attribute: attribute:
+------------+---------------------+--------------+-----------------+ +----------+----------------------+---------------+-----------------+
| TLV Code | Description | IS-IS | Defined in: | | TLV Code | Description | IS-IS TLV | Defined in: |
| Point | | TLV/Sub-TLV | | | Point | | /Sub-TLV | |
+------------+---------------------+--------------+-----------------+ +----------+----------------------+---------------+-----------------+
| 1028 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 | | 1028 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 |
| | Local Node | | | | | Local Node | | |
| 1029 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 | | 1029 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 |
| | Local Node | | | | | Local Node | | |
| 1030 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 | | 1030 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 |
| | Remote Node | | | | | Remote Node | | |
| 1031 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 | | 1031 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 |
| | Remote Node | | | | | Remote Node | | |
| 1088 | Administrative | 22/3 | [RFC5305]/3.1 | | 1088 | Administrative group | 22/3 | [RFC5305]/3.1 |
| | group (color) | | | | | (color) | | |
| 1089 | Maximum link | 22/9 | [RFC5305]/3.3 | | 1089 | Maximum link | 22/9 | [RFC5305]/3.3 |
| | bandwidth | | | | | bandwidth | | |
| 1090 | Max. reservable | 22/10 | [RFC5305]/3.5 | | 1090 | Max. reservable link | 22/10 | [RFC5305]/3.5 |
| | link bandwidth | | | | | bandwidth | | |
| 1091 | Unreserved | 22/11 | [RFC5305]/3.6 | | 1091 | Unreserved bandwidth | 22/11 | [RFC5305]/3.6 |
| | bandwidth | | | | 1092 | TE Default Metric | 22/18 | [RFC5305]/3.7 |
| 1092 | TE Default Metric | 22/18 | [RFC5305]/3.7 | | 1093 | Link Protection Type | 22/20 | [RFC5307]/1.2 |
| 1093 | Link Protection | 22/20 | [RFC5307]/1.2 | | 1094 | MPLS Protocol Mask | --- | Section 3.3.2.2 |
| | Type | | | | 1095 | Metric | --- | Section 3.3.2.3 |
| 1094 | MPLS Protocol Mask | --- | Section 3.3.2.2 | | 1096 | Shared Risk Link | --- | Section 3.3.2.4 |
| 1095 | Metric | --- | Section 3.3.2.3 | | | Group | | |
| 1096 | Shared Risk Link | --- | Section 3.3.2.4 | | 1097 | Opaque link | --- | Section 3.3.2.5 |
| | Group | | | | | attribute | | |
| 1097 | Opaque link | --- | Section 3.3.2.5 | | 1098 | Link Name attribute | --- | Section 3.3.2.6 |
| | attribute | | | +----------+----------------------+---------------+-----------------+
| 1098 | Link Name attribute | --- | Section 3.3.2.6 |
+------------+---------------------+--------------+-----------------+
Table 7: Link Attribute TLVs Table 7: Link Attribute TLVs
3.3.2.1. IPv4/IPv6 Router-ID 3.3.2.1. IPv4/IPv6 Router-ID
The local/remote IPv4/IPv6 Router-ID TLVs are used to describe The local/remote IPv4/IPv6 Router-ID TLVs are used to describe
auxiliary Router-IDs that the IGP might be using, e.g., for TE auxiliary Router-IDs that the IGP might be using, e.g., for TE
purposes. All auxiliary Router-IDs of both the local and the remote purposes. All auxiliary Router-IDs of both the local and the remote
node MUST be included in the link attribute of each link NLRI. If node MUST be included in the link attribute of each link NLRI. If
there are more than one auxiliary Router-ID of a given type, then there are more than one auxiliary Router-ID of a given type, then
multiple TLVs are used to encode them. multiple TLVs are used to encode them.
3.3.2.2. MPLS Protocol Mask TLV 3.3.2.2. MPLS Protocol Mask TLV
The MPLS Protocol TLV carries a bit mask describing which MPLS The MPLS Protocol TLV carries a bit mask describing which MPLS
signaling protocols are enabled. The length of this TLV is 1. The signaling protocols are enabled. The length of this TLV is 1. The
value is a bit array of 8 flags, where each bit represents an MPLS value is a bit array of 8 flags, where each bit represents an MPLS
Protocol capability. Protocol capability.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L|R| Reserved | |L|R| Reserved |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
Figure 19: MPLS Protocol TLV Figure 19: MPLS Protocol TLV
The following bits are defined: The following bits are defined:
+------------+------------------------------------------+-----------+ +----------------+----------------------------------+---------------+
| Bit | Description | Reference | | Bit | Description | Reference |
+------------+------------------------------------------+-----------+ +----------------+----------------------------------+---------------+
| 'L' | Label Distribution Protocol (LDP) | [RFC5036] | | 'L' | Label Distribution Protocol | [RFC5036] |
| 'R' | Extension to RSVP for LSP Tunnels | [RFC3209] | | | (LDP) | |
| | (RSVP-TE) | | | 'R' | Extension to RSVP for LSP | [RFC3209] |
| 'Reserved' | Reserved for future use | | | | Tunnels (RSVP-TE) | |
+------------+------------------------------------------+-----------+ | 'Reserved' | Reserved for future use | |
+----------------+----------------------------------+---------------+
Table 8: MPLS Protocol Mask TLV Codes Table 8: MPLS Protocol Mask TLV Codes
3.3.2.3. Metric TLV 3.3.2.3. Metric TLV
The IGP Metric TLV carries the metric for this link. The length of The IGP Metric TLV carries the metric for this link. The length of
this TLV is variable, depending on the metric width of the underlying this TLV is variable, depending on the metric width of the underlying
protocol. IS-IS small metrics have a length of 1 octet (the two most protocol. IS-IS small metrics have a length of 1 octet (the two most
significant bits are ignored). OSPF metrics have a length of two significant bits are ignored). OSPF metrics have a length of two
octects. IS-IS wide-metrics have a length of three octets. octects. IS-IS wide-metrics have a length of three octets.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// IGP Link Metric (variable length) // // IGP Link Metric (variable length) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 20: Metric TLV format Figure 20: Metric TLV format
3.3.2.4. Shared Risk Link Group TLV 3.3.2.4. Shared Risk Link Group TLV
The Shared Risk Link Group (SRLG) TLV carries the Shared Risk Link The Shared Risk Link Group (SRLG) TLV carries the Shared Risk Link
Group information (see Section 2.3, "Shared Risk Link Group Group information (see Section 2.3, "Shared Risk Link Group
Information", of [RFC4202]). It contains a data structure consisting Information", of [RFC4202]). It contains a data structure consisting
of a (variable) list of SRLG values, where each element in the list of a (variable) list of SRLG values, where each element in the list
has 4 octets, as shown in Figure 21. The length of this TLV is 4 * has 4 octets, as shown in Figure 21. The length of this TLV is 4 *
(number of SRLG values). (number of SRLG values).
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Shared Risk Link Group Value | | Shared Risk Link Group Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// ............ // // ............ //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Shared Risk Link Group Value | | Shared Risk Link Group Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 21: Shared Risk Link Group TLV format Figure 21: Shared Risk Link Group TLV format
Note that there is no SRLG TLV in OSPF-TE. In IS-IS the SRLG Note that there is no SRLG TLV in OSPF-TE. In IS-IS the SRLG
information is carried in two different TLVs: the IPv4 (SRLG) TLV information is carried in two different TLVs: the IPv4 (SRLG) TLV
(Type 138) defined in [RFC5307], and the IPv6 SRLG TLV (Type 139) (Type 138) defined in [RFC5307], and the IPv6 SRLG TLV (Type 139)
defined in [RFC6119]. In Link State NLRI both IPv4 and IPv6 SRLG defined in [RFC6119]. In Link-State NLRI both IPv4 and IPv6 SRLG
information are carried in a single TLV. information are carried in a single TLV.
3.3.2.5. Opaque Link Attribute TLV 3.3.2.5. Opaque Link Attribute TLV
The Opaque link attribute TLV is an envelope that transparently The Opaque link attribute TLV is an envelope that transparently
carries optional link atrribute TLVs advertised by a router. An carries optional link atrribute TLVs advertised by a router. An
originating router shall use this TLV for encoding information originating router shall use this TLV for encoding information
specific to the protocol advertised in the NLRI header Protocol-ID specific to the protocol advertised in the NLRI header Protocol-ID
field or new protocol extensions to the protocol as advertised in the field or new protocol extensions to the protocol as advertised in the
NLRI header Protocol-ID field for which there is no protocol neutral NLRI header Protocol-ID field for which there is no protocol neutral
representation in the BGP link-state NLRI. representation in the BGP link-state NLRI.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Opaque link attributes (variable) // // Opaque link attributes (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 22: Opaque link attribute format Figure 22: Opaque link attribute format
3.3.2.6. Link Name TLV 3.3.2.6. Link Name TLV
The Link Name TLV is optional. The value field identifies the The Link Name TLV is optional. The value field identifies the
symbolic name of the router link. This symbolic name can be the FQDN symbolic name of the router link. This symbolic name can be the FQDN
for the link, it can be a subset of the FQDN, or it can be any string for the link, it can be a subset of the FQDN, or it can be any string
operators want to use for the link. The use of FQDN or a subset of operators want to use for the link. The use of FQDN or a subset of
it is strongly recommended. it is strongly recommended.
The Value field is encoded in 7-bit ASCII. If a user-interface for The Value field is encoded in 7-bit ASCII. If a user-interface for
configuring or displaying this field permits Unicode characters, that configuring or displaying this field permits Unicode characters, that
user-interface is responsible for applying the ToASCII and/or user-interface is responsible for applying the ToASCII and/or
ToUnicode algorithm as described in [RFC3490] to achieve the correct ToUnicode algorithm as described in [RFC3490] to achieve the correct
format for transmission or display. format for transmission or display.
How a router derives and injects link names is outside of the scope How a router derives and injects link names is outside of the scope
of this document. of this document.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Link Name (variable) // // Link Name (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 23: Link Name format Figure 23: Link Name format
3.3.3. Prefix Attribute TLVs 3.3.3. Prefix Attribute TLVs
Prefixes are learned from the IGP topology (IS-IS or OSPF) with a set Prefixes are learned from the IGP topology (IS-IS or OSPF) with a set
of IGP attributes (such as metric, route tags, etc.) that MUST be of IGP attributes (such as metric, route tags, etc.) that MUST be
reflected into the LINK_STATE attribute. This section describes the reflected into the LINK_STATE attribute. This section describes the
different attributes related to the IPv4/IPv6 prefixes. Prefix different attributes related to the IPv4/IPv6 prefixes. Prefix
Attributes TLVs SHOULD be used when advertising NLRI types 3 and 4 Attributes TLVs SHOULD be used when advertising NLRI types 3 and 4
only. The following attributes TLVs are defined: only. The following attributes TLVs are defined:
+---------------+----------------------+----------+-----------------+ +-------------+---------------------+--------------+----------------+
| TLV Code | Description | Length | Reference | | TLV Code | Description | Length | Reference |
| Point | | | | | Point | | | |
+---------------+----------------------+----------+-----------------+ +-------------+---------------------+--------------+----------------+
| 1152 | IGP Flags | 1 | Section 3.3.3.1 | | 1152 | IGP Flags | 1 | Section |
| 1153 | Route Tag | 4*n | Section 3.3.3.2 | | | | | 3.3.3.1 |
| 1154 | Extended Tag | 8*n | Section 3.3.3.3 | | 1153 | Route Tag | 4*n | Section |
| 1155 | Prefix Metric | 4 | Section 3.3.3.4 | | | | | 3.3.3.2 |
| 1156 | OSPF Forwarding | 4 | Section 3.3.3.5 | | 1154 | Extended Tag | 8*n | Section |
| | Address | | | | | | | 3.3.3.3 |
| 1157 | Opaque Prefix | variable | Section 3.3.3.6 | | 1155 | Prefix Metric | 4 | Section |
| | Attribute | | | | | | | 3.3.3.4 |
+---------------+----------------------+----------+-----------------+ | 1156 | OSPF Forwarding | 4 | Section |
| | Address | | 3.3.3.5 |
| 1157 | Opaque Prefix | variable | Section |
| | Attribute | | 3.3.3.6 |
+-------------+---------------------+--------------+----------------+
Table 9: Prefix Attribute TLVs Table 9: Prefix Attribute TLVs
3.3.3.1. IGP Flags TLV 3.3.3.1. IGP Flags TLV
IGP Flags TLV contains IS-IS and OSPF flags and bits originally IGP Flags TLV contains IS-IS and OSPF flags and bits originally
assigned to the prefix. The IGP Flags TLV is encoded as follows: assigned tothe prefix. The IGP Flags TLV is encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|D| Reserved | |D| Reserved |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
Figure 24: IGP Flag TLV format Figure 24: IGP Flag TLV format
The value field contains bits defined according to the table below: The value field contains bits defined according to the table below:
+----------+--------------------------+-----------+ +----------+--------------------------+-----------+
| Bit | Description | Reference | | Bit | Description | Reference |
+----------+--------------------------+-----------+ +----------+--------------------------+-----------+
| 'D' | IS-IS Up/Down Bit | [RFC5305] | | 'D' | IS-IS Up/Down Bit | [RFC5305] |
| Reserved | Reserved for future use. | | | Reserved | Reserved for future use. | |
+----------+--------------------------+-----------+ +----------+--------------------------+-----------+
Table 10: IGP Flag Bits Definitions Table 10: IGP Flag Bits Definitions
3.3.3.2. Route Tag 3.3.3.2. Route Tag
Route Tag TLV carries original IGP TAGs (IS-IS [RFC5130] or OSPF) of Route Tag TLV carries original IGP TAGs (IS-IS [RFC5130] or OSPF) of
the prefix and is encoded as follows: the prefix and is encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Route Tags (one or more) // // Route Tags (one or more) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 25: IGP Route TAG TLV format Figure 25: IGP Route TAG TLV format
Length is a multiple of 4. Length is a multiple of 4.
The value field contains one or more Route Tags as learned in the IGP The value field contains one or more Route Tags as learned in the IGP
topology. topology.
3.3.3.3. Extended Route Tag 3.3.3.3. Extended Route Tag
Extended Route Tag TLV carries IS-IS Extended Route TAGs of the Extended Route Tag TLV carries IS-IS Extended Route TAGs of the
prefix [RFC5130] and is encoded as follows: prefix [RFC5130] and is encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Extended Route Tag (one or more) // // Extended Route Tag (one or more) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 26: Extended IGP Route TAG TLV format Figure 26: Extended IGP Route TAG TLV format
Length is a multiple of 8. Length is a multiple of 8.
The 'Extended Route Tag' field contains one or more Extended Route The 'Extended Route Tag' field contains one or more Extended Route
Tags as learned in the IGP topology. Tags as learned in the IGP topology.
3.3.3.4. Prefix Metric TLV 3.3.3.4. Prefix Metric TLV
Prefix Metric TLV carries the metric of the prefix as known in the Prefix Metric TLV carries the metric of the prefix as known in the
IGP topology [RFC5305]. The attribute is mandatory and can only IGP topology [RFC5305]. The attribute is mandatory and can only
appear once. appear once.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Metric | | Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 27: Prefix Metric TLV Format Figure 27: Prefix Metric TLV Format
Length is 4. Length is 4.
3.3.3.5. OSPF Forwarding Address TLV 3.3.3.5. OSPF Forwarding Address TLV
OSPF Forwarding Address TLV [RFC2328] carries the OSPF forwarding OSPF Forwarding Address TLV [RFC2328] carries the OSPF forwarding
address as known in the original OSPF advertisement. Forwarding address as known in the original OSPF advertisement. Forwarding
address can be either IPv4 or IPv6. address can be either IPv4 or IPv6.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Forwarding Address (variable) // // Forwarding Address (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 28: OSPF Forwarding Address TLV Format Figure 28: OSPF Forwarding Address TLV Format
Length is 4 for an IPv4 forwarding address an 16 for an IPv6 Length is 4 for an IPv4 forwarding address an 16 for an IPv6
forwarding address. forwarding address.
3.3.3.6. Opaque Prefix Attribute TLV 3.3.3.6. Opaque Prefix Attribute TLV
The Opaque Prefix attribute TLV is an envelope that transparently The Opaque Prefix attribute TLV is an envelope that transparently
carries optional prefix attribute TLVs advertised by a router. An carries optional prefix attribute TLVs advertised by a router. An
originating router shall use this TLV for encoding information originating router shall use this TLV for encoding information
specific to the protocol advertised in the NLRI header Protocol-ID specific to the protocol advertised in the NLRI header Protocol-ID
field or new protocol extensions to the protocol as advertised in the field or new protocol extensions to the protocol as advertised in the
NLRI header Protocol-ID field for which there is no protocol neutral NLRI header Protocol-ID field for which there is no protocol neutral
representation in the BGP link-state NLRI. representation in the BGP link-state NLRI.
The format of the TLV is as follows: The format of the TLV is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Opaque Prefix Attributes (variable) // // Opaque Prefix Attributes (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 29: Opaque Prefix Attribute TLV Format Figure 29: Opaque Prefix Attribute TLV Format
Type is as specified in Table 9 and Length is variable. Type is as specified in Table 9 and Length is variable.
3.4. BGP Next Hop Information 3.4. BGP Next Hop Information
BGP link-state information for both IPv4 and IPv6 networks can be BGP link-state information for both IPv4 and IPv6 networks can be
carried over either an IPv4 BGP session, or an IPv6 BGP session. If carried over either an IPv4 BGP session, or an IPv6 BGP session. If
IPv4 BGP session is used, then the next hop in the MP_REACH_NLRI IPv4 BGP session is used, then the next hop in the MP_REACH_NLRI
skipping to change at page 31, line 19 skipping to change at page 29, line 45
zero is prepended to the next hop. zero is prepended to the next hop.
The BGP Next Hop attribute is used by each BGP-LS speaker to validate The BGP Next Hop attribute is used by each BGP-LS speaker to validate
the NLRI it receives. However, this specification doesn't mandate the NLRI it receives. However, this specification doesn't mandate
any rule regarding the re-write of the BGP Next Hop attribute. any rule regarding the re-write of the BGP Next Hop attribute.
3.5. Inter-AS Links 3.5. Inter-AS Links
The main source of TE information is the IGP, which is not active on The main source of TE information is the IGP, which is not active on
inter-AS links. In some cases, the IGP may have information of inter-AS links. In some cases, the IGP may have information of
inter-AS links ([RFC5392], [RFC5316]). In other cases, for injecting inter-AS links ([RFC5392], [RFC5316]). In other cases, an
a non-IGP enabled link into the BGP link-state RIB, an implementation implementation SHOULD provide a means to inject inter-AS links into
MUST support configuration of either 'Static' or 'Direct' links. BGP-LS. The exact mechanism used to provision the inter-AS links is
outside the scope of this document
3.6. Router-ID Anchoring Example: ISO Pseudonode 3.6. Router-ID Anchoring Example: ISO Pseudonode
Encoding of a broadcast LAN in IS-IS provides a good example of how Encoding of a broadcast LAN in IS-IS provides a good example of how
Router-IDs are encoded. Consider Figure 30. This represents a Router-IDs are encoded. Consider Figure 30. This represents a
Broadcast LAN between a pair of routers. The "real" (=non Broadcast LAN between a pair of routers. The "real" (=non
pseudonode) routers have both an IPv4 Router-ID and IS-IS Node-ID. pseudonode) routers have both an IPv4 Router-ID and IS-IS Node-ID.
The pseudonode does not have an IPv4 Router-ID. Node1 is the DIS for The pseudonode does not have an IPv4 Router-ID. Node1 is the DIS for
the LAN. Two unidirectional links (Node1, Pseudonode 1) and the LAN. Two unidirectional links (Node1, Pseudonode 1) and
(Pseudonode1, Node2) are being generated. (Pseudonode1, Node2) are being generated.
The link NRLI of (Node1, Pseudonode1) is encoded as follows: the IGP The link NRLI of (Node1, Pseudonode1) is encoded as follows: the IGP
Router-ID TLV of the local node descriptor is 6 octets long Router-ID TLV of the local node descriptor is 6 octets long
skipping to change at page 32, line 5 skipping to change at page 30, line 28
192.0.2.1, the IPv4 Router-ID of Node1. 192.0.2.1, the IPv4 Router-ID of Node1.
The link NRLI of (Pseudonode1. Node2) is encoded as follows: the IGP The link NRLI of (Pseudonode1. Node2) is encoded as follows: the IGP
Router-ID TLV of the local node descriptor is 7 octets long Router-ID TLV of the local node descriptor is 7 octets long
containing the ISO-ID of Pseudonode1, 1920.0000.2001.02; the IGP containing the ISO-ID of Pseudonode1, 1920.0000.2001.02; the IGP
Router-ID TLV of the remote node descriptor is 6 octets long Router-ID TLV of the remote node descriptor is 6 octets long
containing ISO-ID of Node2, 1920.0000.2002. The BGP-LS attribute of containing ISO-ID of Node2, 1920.0000.2002. The BGP-LS attribute of
this link contains one remote IPv4 Router-ID TLV (TLV type 1030) this link contains one remote IPv4 Router-ID TLV (TLV type 1030)
containing 192.0.2.2, the IPv4 Router-ID of Node2. containing 192.0.2.2, the IPv4 Router-ID of Node2.
+-----------------+ +-----------------+ +-----------------+ +-----------------+ +-----------------+ +-----------------+
| Node1 | | Pseudonode1 | | Node2 | | Node1 | | Pseudonode1 | | Node2 |
|1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00| |1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00|
| 192.0.2.1 | | | | 192.0.2.2 | | 192.0.2.1 | | | | 192.0.2.2 |
+-----------------+ +-----------------+ +-----------------+ +-----------------+ +-----------------+ +-----------------+
Figure 30: IS-IS Pseudonodes Figure 30: IS-IS Pseudonodes
3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration 3.7. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration
Graceful migration from one IGP to another requires coordinated Graceful migration from one IGP to another requires coordinated
operation of both protocols during the migration period. Such a operation of both protocols during the migration period. Such a
coordination requires identifying a given physical link in both IGPs. coordination requires identifying a given physical link in both IGPs.
The IPv4 Router-ID provides that "glue" which is present in the node The IPv4 Router-ID provides that "glue" which is present in the node
descriptors of the OSPF link NLRI and in the link attribute of the descriptors of the OSPF link NLRI and in the link attribute of the
skipping to change at page 33, line 16 skipping to change at page 31, line 38
Consider Figure 31. Both AS1 and AS2 operators want to protect their Consider Figure 31. Both AS1 and AS2 operators want to protect their
inter-AS {R1,R3}, {R2, R4} links using RSVP-FRR LSPs. If R1 wants to inter-AS {R1,R3}, {R2, R4} links using RSVP-FRR LSPs. If R1 wants to
compute its link-protection LSP to R3 it needs to "see" an alternate compute its link-protection LSP to R3 it needs to "see" an alternate
path to R3. Therefore the AS2 operator exposes its topology. All path to R3. Therefore the AS2 operator exposes its topology. All
BGP TE enabled routers in AS1 "see" the full topology of AS and BGP TE enabled routers in AS1 "see" the full topology of AS and
therefore can compute a backup path. Note that the decision if the therefore can compute a backup path. Note that the decision if the
direct link between {R3, R4} or the {R4, R5, R3) path is used is made direct link between {R3, R4} or the {R4, R5, R3) path is used is made
by the computing router. by the computing router.
AS1 : AS2 AS1 : AS2
: :
R1-------R3 R1-------R3
| : | \ | : | \
| : | R5 | : | R5
| : | / | : | /
R2-------R4 R2-------R4
: :
: :
Figure 31: No link aggregation Figure 31: No link aggregation
4.2. Example: ASBR to ASBR Path Aggregation 4.2. Example: ASBR to ASBR Path Aggregation
The brief difference between the "no-link aggregation" example and The brief difference between the "no-link aggregation" example and
this example is that no specific link gets exposed. Consider this example is that no specific link gets exposed. Consider Figure
Figure 32. The only link which gets advertised by AS2 is an 32. The only link which gets advertised by AS2 is an "aggregate"
"aggregate" link between R3 and R4. This is enough to tell AS1 that link between R3 and R4. This is enough to tell AS1 that there is a
there is a backup path. However the actual links being used are backup path. However the actual links being used are hidden from the
hidden from the topology. topology.
AS1 : AS2 AS1 : AS2
: :
R1-------R3 R1-------R3
| : | | : |
| : | | : |
| : | | : |
R2-------R4 R2-------R4
: :
: :
Figure 32: ASBR link aggregation Figure 32: ASBR link aggregation
4.3. Example: Multi-AS Path Aggregation 4.3. Example: Multi-AS Path Aggregation
Service providers in control of multiple ASes may even decide to not Service providers in control of multiple ASes may even decide to not
expose their internal inter-AS links. Consider Figure 33. AS3 is expose their internal inter-AS links. Consider Figure 33. AS3 is
modeled as a single node which connects to the border routers of the modeled as a single node which connects to the border routers of the
aggregated domain. aggregated domain.
AS1 : AS2 : AS3 AS1 : AS2 : AS3
: : : :
R1-------R3----- R1-------R3-----
| : : \ | : : \
| : : vR0 | : : vR0
| : : / | : : /
R2-------R4----- R2-------R4-----
: : : :
: : : :
Figure 33: Multi-AS aggregation Figure 33: Multi-AS aggregation
5. IANA Considerations 5. IANA Considerations
This document requests a code point from the registry of Address This document requests a code point from the registry of Address
Family Numbers. As per early allocation procedure this is AFI 16388. Family Numbers. As per early allocation procedure this is AFI 16388.
This document requests a code point from the registry of Subsequent This document requests a code point from the registry of Subsequent
Address Family Numbers. As per early allocation procedure this is Address Family Numbers. As per early allocation procedure this is
skipping to change at page 35, line 27 skipping to change at page 33, line 45
level of isolation and fault-containment between different NLRI level of isolation and fault-containment between different NLRI
types. types.
6.1.2. Installation and Initial Setup 6.1.2. Installation and Initial Setup
Configuration parameters defined in Section 6.2.3 SHOULD be Configuration parameters defined in Section 6.2.3 SHOULD be
initialized to the following default values: initialized to the following default values:
o The Link-State NLRI capability is turned off for all neighbors. o The Link-State NLRI capability is turned off for all neighbors.
o The maximum rate at which Link State NLRIs will be advertised/ o The maximum rate at which Link-State NLRIs will be advertised/
withdrawn from neighbors is set to 200 updates per second. withdrawn from neighbors is set to 200 updates per second.
6.1.3. Migration Path 6.1.3. Migration Path
The proposed extension is only activated between BGP peers after The proposed extension is only activated between BGP peers after
capability negotiation. Moreover, the extensions can be turned on/ capability negotiation. Moreover, the extensions can be turned on/
off an individual peer basis (see Section 6.2.3), so the extension off an individual peer basis (see Section 6.2.3), so the extension
can be gradually rolled out in the network. can be gradually rolled out in the network.
6.1.4. Requirements on Other Protocols and Functional Components 6.1.4. Requirements on Other Protocols and Functional Components
skipping to change at page 36, line 28 skipping to change at page 34, line 50
TBD. TBD.
6.2.3. Configuration Management 6.2.3. Configuration Management
An implementation SHOULD allow the operator to specify neighbors to An implementation SHOULD allow the operator to specify neighbors to
which Link-State NLRIs will be advertised and from which Link-State which Link-State NLRIs will be advertised and from which Link-State
NLRIs will be accepted. NLRIs will be accepted.
An implementation SHOULD allow the operator to specify the maximum An implementation SHOULD allow the operator to specify the maximum
rate at which Link State NLRIs will be advertised/withdrawn from rate at which Link-State NLRIs will be advertised/withdrawn from
neighbors neighbors
An implementation SHOULD allow the operator to specify the maximum An implementation SHOULD allow the operator to specify the maximum
number of Link State NLRIs stored in router's RIB. number of Link-State NLRIs stored in router's RIB.
An implementation SHOULD allow the operator to create abstracted An implementation SHOULD allow the operator to create abstracted
topologies that are advertised to neighbors; Create different topologies that are advertised to neighbors; Create different
abstractions for different neighbors. abstractions for different neighbors.
An implementation SHOULD allow the operator to configure a 64-bit An implementation SHOULD allow the operator to configure a 64-bit
instance ID. instance ID.
An implementation SHOULD allow the operator to configure a pair of An implementation SHOULD allow the operator to configure a pair of
ASN and BGP-LS identifier per flooding set the node participates in. ASN and BGP-LS identifier per flooding set the node participates in.
skipping to change at page 38, line 5 skipping to change at page 35, line 44
An operator SHOULD define ACLs to limit inbound updates as follows: An operator SHOULD define ACLs to limit inbound updates as follows:
o Drop all updates from Consumer peers o Drop all updates from Consumer peers
7. TLV/Sub-TLV Code Points Summary 7. TLV/Sub-TLV Code Points Summary
This section contains the global table of all TLVs/Sub-TLVs defined This section contains the global table of all TLVs/Sub-TLVs defined
in this document. in this document.
+-----------+---------------------+---------------+-----------------+ +---------+----------------------+--------------+-------------------+
| TLV Code | Description | IS-IS TLV/ | Value defined | | TLV | Description | IS-IS TLV/ | Value defined in: |
| Point | | Sub-TLV | in: | | Code | | Sub-TLV | |
+-----------+---------------------+---------------+-----------------+ | Point | | | |
| 256 | Local Node | --- | Section 3.2.1.2 | +---------+----------------------+--------------+-------------------+
| | Descriptors | | | | 256 | Local Node | --- | Section 3.2.1.2 |
| 257 | Remote Node | --- | Section 3.2.1.3 | | | Descriptors | | |
| | Descriptors | | | | 257 | Remote Node | --- | Section 3.2.1.3 |
| 258 | Link Local/Remote | 22/4 | [RFC5307]/1.1 | | | Descriptors | | |
| | Identifiers | | | | 258 | Link Local/Remote | 22/4 | [RFC5307]/1.1 |
| 259 | IPv4 interface | 22/6 | [RFC5305]/3.2 | | | Identifiers | | |
| | address | | | | 259 | IPv4 interface | 22/6 | [RFC5305]/3.2 |
| 260 | IPv4 neighbor | 22/8 | [RFC5305]/3.3 | | | address | | |
| | address | | | | 260 | IPv4 neighbor | 22/8 | [RFC5305]/3.3 |
| 261 | IPv6 interface | 22/12 | [RFC6119]/4.2 | | | address | | |
| | address | | | | 261 | IPv6 interface | 22/12 | [RFC6119]/4.2 |
| 262 | IPv6 neighbor | 22/13 | [RFC6119]/4.3 | | | address | | |
| | address | | | | 262 | IPv6 neighbor | 22/13 | [RFC6119]/4.3 |
| 263 | Multi-Topology ID | --- | Section 3.2.1.5 | | | address | | |
| 264 | OSPF Route Type | --- | Section 3.2.3 | | 263 | Multi-Topology ID | --- | Section 3.2.1.5 |
| 265 | IP Reachability | --- | Section 3.2.3 | | 264 | OSPF Route Type | --- | Section 3.2.3 |
| | Information | | | | 265 | IP Reachability | --- | Section 3.2.3 |
| 512 | Autonomous System | --- | Section 3.2.1.4 | | | Information | | |
| 513 | BGP-LS Identifier | --- | Section 3.2.1.4 | | 512 | Autonomous System | --- | Section 3.2.1.4 |
| 514 | Area ID | --- | Section 3.2.1.4 | | 513 | BGP-LS Identifier | --- | Section 3.2.1.4 |
| 515 | IGP Router-ID | --- | Section 3.2.1.4 | | 514 | Area ID | --- | Section 3.2.1.4 |
| 1024 | Node Flag Bits | --- | Section 3.3.1.1 | | 515 | IGP Router-ID | --- | Section 3.2.1.4 |
| 1025 | Opaque Node | --- | Section 3.3.1.5 | | 1024 | Node Flag Bits | --- | Section 3.3.1.1 |
| | Properties | | | | 1025 | Opaque Node | --- | Section 3.3.1.5 |
| 1026 | Node Name | variable | Section 3.3.1.3 | | | Properties | | |
| 1027 | IS-IS Area | variable | Section 3.3.1.2 | | 1026 | Node Name | variable | Section 3.3.1.3 |
| | Identifier | | | | 1027 | IS-IS Area | variable | Section 3.3.1.2 |
| 1028 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 | | | Identifier | | |
| | Local Node | | | | 1028 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 |
| 1029 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 | | | Local Node | | |
| | Local Node | | | | 1029 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 |
| 1030 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 | | | Local Node | | |
| | Remote Node | | | | 1030 | IPv4 Router-ID of | 134/--- | [RFC5305]/4.3 |
| 1031 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 | | | Remote Node | | |
| | Remote Node | | | | 1031 | IPv6 Router-ID of | 140/--- | [RFC6119]/4.1 |
| 1088 | Administrative | 22/3 | [RFC5305]/3.1 | | | Remote Node | | |
| | group (color) | | | | 1088 | Administrative group | 22/3 | [RFC5305]/3.1 |
| 1089 | Maximum link | 22/9 | [RFC5305]/3.3 | | | (color) | | |
| | bandwidth | | | | 1089 | Maximum link | 22/9 | [RFC5305]/3.3 |
| 1090 | Max. reservable | 22/10 | [RFC5305]/3.5 | | | bandwidth | | |
| | link bandwidth | | | | 1090 | Max. reservable link | 22/10 | [RFC5305]/3.5 |
| 1091 | Unreserved | 22/11 | [RFC5305]/3.6 | | | bandwidth | | |
| | bandwidth | | | | 1091 | Unreserved bandwidth | 22/11 | [RFC5305]/3.6 |
| 1092 | TE Default Metric | 22/18 | [RFC5305]/3.7 | | 1092 | TE Default Metric | 22/18 | [RFC5305]/3.7 |
| 1093 | Link Protection | 22/20 | [RFC5307]/1.2 | | 1093 | Link Protection Type | 22/20 | [RFC5307]/1.2 |
| | Type | | | | 1094 | MPLS Protocol Mask | --- | Section 3.3.2.2 |
| 1094 | MPLS Protocol Mask | --- | Section 3.3.2.2 | | 1095 | Metric | --- | Section 3.3.2.3 |
| 1095 | Metric | --- | Section 3.3.2.3 | | 1096 | Shared Risk Link | --- | Section 3.3.2.4 |
| 1096 | Shared Risk Link | --- | Section 3.3.2.4 | | | Group | | |
| | Group | | | | 1097 | Opaque link | --- | Section 3.3.2.5 |
| 1097 | Opaque link | --- | Section 3.3.2.5 | | | attribute | | |
| | attribute | | | | 1098 | Link Name attribute | --- | Section 3.3.2.6 |
| 1098 | Link Name attribute | --- | Section 3.3.2.6 | | 1152 | IGP Flags | --- | Section 3.3.3.1 |
| 1152 | IGP Flags | --- | Section 3.3.3.1 | | 1153 | Route Tag | --- | [RFC5130] |
| 1153 | Route Tag | --- | [RFC5130] | | 1154 | Extended Tag | --- | [RFC5130] |
| 1154 | Extended Tag | --- | [RFC5130] | | 1155 | Prefix Metric | --- | [RFC5305] |
| 1155 | Prefix Metric | --- | [RFC5305] | | 1156 | OSPF Forwarding | --- | [RFC2328] |
| 1156 | OSPF Forwarding | --- | [RFC2328] | | | Address | | |
| | Address | | | | 1157 | Opaque Prefix | --- | Section 3.3.3.6 |
| 1157 | Opaque Prefix | --- | Section 3.3.3.6 | | | Attribute | | |
| | Attribute | | | +---------+----------------------+--------------+-------------------+
+-----------+---------------------+---------------+-----------------+
Table 11: Summary Table of TLV/Sub-TLV Codepoints Table 11: Summary Table of TLV/Sub-TLV Codepoints
8. Security Considerations 8. Security Considerations
Procedures and protocol extensions defined in this document do not Procedures and protocol extensions defined in this document do not
affect the BGP security model. See affect the BGP security model. See the 'Security Considerations'
[I-D.ietf-karp-routing-tcp-analysis] for details. section of [RFC4271] for a discussion of BGP security. Also refer to
[RFC4272] and [I-D.ietf-karp-routing-tcp-analysis] for analysis of
security issues for BGP.
A BGP Speaker SHOULD NOT accept updates from a Consumer peer. In the context of the BGP peerings associated with this document, a
BGP Speaker SHOULD NOT accept updates from a Consumer peer. That is,
a participating BGP Speaker, should be aware of the nature of its
relationships for link state relationships and should protect itself
from peers sending updates that either represent erroneous
information feedback loops, or are false input. Such protection can
be achieved by manual configuration of Consumer peers at the BGP
Speaker.
An operator SHOULD employ a mechanism to protect a BGP Speaker An operator SHOULD employ a mechanism to protect a BGP Speaker
against DDOS attacks from Consumers. against DDOS attacks from Consumers. The principal attack a consumer
may apply is to attempt to start multiple sessions either
sequentially or simultaneously. Protection can be applied by
imposing rate limits.
Additionally, it may be considered that the export of link state and
TE information as described in this document constitutes a risk to
confidentiality of mission-critical or commercially-sensitive
information about the network. BGP peerings are not automatic and
require configuration, thus it is the responsibility of the network
operator to ensure that only trusted Consumers are configured to
receive such information.
9. Contributors 9. Contributors
We would like to thank Robert Varga for the significant contribution We would like to thank Robert Varga for the significant contribution
he gave to this document. he gave to this document.
10. Acknowledgements 10. Acknowledgements
We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek
Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les
skipping to change at page 40, line 14 skipping to change at page 38, line 22
their comments. their comments.
11. References 11. References
11.1. Normative References 11.1. Normative References
[RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and [RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
dual environments", RFC 1195, December 1990. dual environments", RFC 1195, December 1990.
[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
E. Lear, "Address Allocation for Private Internets", E. Lear, "Address Allocation for Private Internets", BCP
BCP 5, RFC 1918, February 1996. 5, RFC 1918, February 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998. [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC2545] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol [RFC2545] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
Extensions for IPv6 Inter-Domain Routing", RFC 2545, Extensions for IPv6 Inter-Domain Routing", RFC 2545, March
March 1999. 1999.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001. Tunnels", RFC 3209, December 2001.
[RFC3490] Faltstrom, P., Hoffman, P., and A. Costello, [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications (IDNA)", "Internationalizing Domain Names in Applications (IDNA)",
RFC 3490, March 2003. RFC 3490, March 2003.
[RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in [RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in
Support of Generalized Multi-Protocol Label Switching Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4202, October 2005. (GMPLS)", RFC 4202, October 2005.
[RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
Protocol 4 (BGP-4)", RFC 4271, January 2006. Protocol 4 (BGP-4)", RFC 4271, January 2006.
[RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", RFC
4272, January 2006.
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
"Multiprotocol Extensions for BGP-4", RFC 4760, "Multiprotocol Extensions for BGP-4", RFC 4760, January
January 2007. 2007.
[RFC4915] Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P. [RFC4915] Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF", Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF", RFC
RFC 4915, June 2007. 4915, June 2007.
[RFC5036] Andersson, L., Minei, I., and B. Thomas, "LDP [RFC5036] Andersson, L., Minei, I., and B. Thomas, "LDP
Specification", RFC 5036, October 2007. Specification", RFC 5036, October 2007.
[RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
Topology (MT) Routing in Intermediate System to Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs)", RFC 5120, February 2008. Intermediate Systems (IS-ISs)", RFC 5120, February 2008.
[RFC5130] Previdi, S., Shand, M., and C. Martin, "A Policy Control [RFC5130] Previdi, S., Shand, M., and C. Martin, "A Policy Control
Mechanism in IS-IS Using Administrative Tags", RFC 5130, Mechanism in IS-IS Using Administrative Tags", RFC 5130,
skipping to change at page 41, line 39 skipping to change at page 39, line 50
[RFC6286] Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP [RFC6286] Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP
Identifier for BGP-4", RFC 6286, June 2011. Identifier for BGP-4", RFC 6286, June 2011.
[RFC6822] Previdi, S., Ginsberg, L., Shand, M., Roy, A., and D. [RFC6822] Previdi, S., Ginsberg, L., Shand, M., Roy, A., and D.
Ward, "IS-IS Multi-Instance", RFC 6822, December 2012. Ward, "IS-IS Multi-Instance", RFC 6822, December 2012.
11.2. Informative References 11.2. Informative References
[I-D.ietf-alto-protocol] [I-D.ietf-alto-protocol]
Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol", Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol", draft-
draft-ietf-alto-protocol-13 (work in progress), ietf-alto-protocol-13 (work in progress), September 2012.
September 2012.
[I-D.ietf-karp-routing-tcp-analysis] [I-D.ietf-karp-routing-tcp-analysis]
Jethanandani, M., Patel, K., and L. Zheng, "Analysis of Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP and MSDP Issues According to KARP Design BGP, LDP, PCEP and MSDP Issues According to KARP Design
Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in
progress), April 2013. progress), April 2013.
[RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", RFC 4655, August 2006. Element (PCE)-Based Architecture", RFC 4655, August 2006.
skipping to change at page 42, line 4 skipping to change at page 40, line 15
[I-D.ietf-karp-routing-tcp-analysis] [I-D.ietf-karp-routing-tcp-analysis]
Jethanandani, M., Patel, K., and L. Zheng, "Analysis of Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP and MSDP Issues According to KARP Design BGP, LDP, PCEP and MSDP Issues According to KARP Design
Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in
progress), April 2013. progress), April 2013.
[RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", RFC 4655, August 2006. Element (PCE)-Based Architecture", RFC 4655, August 2006.
[RFC4970] Lindem, A., Shen, N., Vasseur, JP., Aggarwal, R., and S. [RFC4970] Lindem, A., Shen, N., Vasseur, JP., Aggarwal, R., and S.
Shaffer, "Extensions to OSPF for Advertising Optional Shaffer, "Extensions to OSPF for Advertising Optional
Router Capabilities", RFC 4970, July 2007. Router Capabilities", RFC 4970, July 2007.
[RFC5073] Vasseur, J. and J. Le Roux, "IGP Routing Protocol [RFC5073] Vasseur, J. and J. Le Roux, "IGP Routing Protocol
Extensions for Discovery of Traffic Engineering Node Extensions for Discovery of Traffic Engineering Node
Capabilities", RFC 5073, December 2007. Capabilities", RFC 5073, December 2007.
[RFC5152] Vasseur, JP., Ayyangar, A., and R. Zhang, "A Per-Domain [RFC5152] Vasseur, JP., Ayyangar, A., and R. Zhang, "A Per-Domain
Path Computation Method for Establishing Inter-Domain Path Computation Method for Establishing Inter-Domain
Traffic Engineering (TE) Label Switched Paths (LSPs)", Traffic Engineering (TE) Label Switched Paths (LSPs)", RFC
RFC 5152, February 2008. 5152, February 2008.
[RFC5316] Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in [RFC5316] Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
Support of Inter-Autonomous System (AS) MPLS and GMPLS Support of Inter-Autonomous System (AS) MPLS and GMPLS
Traffic Engineering", RFC 5316, December 2008. Traffic Engineering", RFC 5316, December 2008.
[RFC5392] Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in [RFC5392] Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in
Support of Inter-Autonomous System (AS) MPLS and GMPLS Support of Inter-Autonomous System (AS) MPLS and GMPLS
Traffic Engineering", RFC 5392, January 2009. Traffic Engineering", RFC 5392, January 2009.
[RFC5693] Seedorf, J. and E. Burger, "Application-Layer Traffic [RFC5693] Seedorf, J. and E. Burger, "Application-Layer Traffic
Optimization (ALTO) Problem Statement", RFC 5693, Optimization (ALTO) Problem Statement", RFC 5693, October
October 2009. 2009.
[RFC5706] Harrington, D., "Guidelines for Considering Operations and [RFC5706] Harrington, D., "Guidelines for Considering Operations and
Management of New Protocols and Protocol Extensions", Management of New Protocols and Protocol Extensions", RFC
RFC 5706, November 2009. 5706, November 2009.
[RFC6549] Lindem, A., Roy, A., and S. Mirtorabi, "OSPFv2 Multi- [RFC6549] Lindem, A., Roy, A., and S. Mirtorabi, "OSPFv2 Multi-
Instance Extensions", RFC 6549, March 2012. Instance Extensions", RFC 6549, March 2012.
Authors' Addresses Authors' Addresses
Hannes Gredler Hannes Gredler
Juniper Networks, Inc. Juniper Networks, Inc.
1194 N. Mathilda Ave. 1194 N. Mathilda Ave.
Sunnyvale, CA 94089 Sunnyvale, CA 94089
US US
Email: hannes@juniper.net Email: hannes@juniper.net
Jan Medved Jan Medved
Cisco Systems, Inc. Cisco Systems, Inc.
170, West Tasman Drive 170, West Tasman Drive
San Jose, CA 95134 San Jose, CA 95134
US US
Email: jmedved@cisco.com Email: jmedved@cisco.com
Stefano Previdi Stefano Previdi
Cisco Systems, Inc. Cisco Systems, Inc.
 End of changes. 91 change blocks. 
579 lines changed or deleted 600 lines changed or added

This html diff was produced by rfcdiff 1.41. The latest version is available from http://tools.ietf.org/tools/rfcdiff/