Inter-Domain Routing                                          H. Gredler
Internet-Draft                                    Juniper Networks, Inc.
Intended status: Standards Track                               J. Medved
Expires: August 28, November 22, 2013                                    S. Previdi
                                                     Cisco Systems, Inc.
                                                               A. Farrel
                                                  Juniper Networks, Inc.
                                                                  S. Ray
                                                     Cisco Systems, Inc.
                                                       February 24,
                                                            May 21, 2013

  North-Bound Distribution of Link-State and TE Information using BGP
                   draft-ietf-idr-ls-distribution-02
                   draft-ietf-idr-ls-distribution-03

Abstract

   In a number of environments, a component external to a network is
   called upon to perform computations based on the network topology and
   current state of the connections within the network, including
   traffic engineering information.  This is information typically
   distributed by IGP routing protocols within the network

   This document describes a mechanism by which links state and traffic
   engineering information can be collected from networks and shared
   with external components using the BGP routing protocol.  This is
   achieved using a new BGP Network Layer Reachability Information
   (NLRI) encoding format.  The mechanism is applicable to physical and
   virtual IGP links.  The mechanism described is subject to policy
   control.

   Applications of this technique include Application Layer Traffic
   Optimization (ALTO) servers, and Path Computation Elements (PCEs).

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 28, November 22, 2013.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4  5
   2.  Motivation and Applicability . . . . . . . . . . . . . . . . .  5  6
     2.1.  MPLS-TE with PCE . . . . . . . . . . . . . . . . . . . . .  5  6
     2.2.  ALTO Server Network API  . . . . . . . . . . . . . . . . .  7  8
   3.  Carrying Link State Information in BGP . . . . . . . . . . . .  8  9
     3.1.  TLV Format . . . . . . . . . . . . . . . . . . . . . . . .  8  9
     3.2.  The Link State NLRI  . . . . . . . . . . . . . . . . . . .  9 10
       3.2.1.  Identifier TLV . . . . . . . . . . . . . . . . . . . . 12
       3.2.2.  Node Descriptors . . . . . . . . . . . . . . . . . . . 14
       3.2.3. 13
       3.2.2.  Link Descriptors . . . . . . . . . . . . . . . . . . . 22
       3.2.4. 17
       3.2.3.  Prefix Descriptors . . . . . . . . . . . . . . . . . . 23 18
     3.3.  The LINK_STATE Attribute . . . . . . . . . . . . . . . . . 23 20
       3.3.1.  Link  Node Attribute TLVs  . . . . . . . . . . . . . . . . . 24 20
       3.3.2.  Node  Link Attribute TLVs  . . . . . . . . . . . . . . . . . 27 23
       3.3.3.  Prefix Attributes Attribute TLVs  . . . . . . . . . . . . . . . . 29 27
     3.4.  BGP Next Hop Information . . . . . . . . . . . . . . . . . 33 30
     3.5.  Inter-AS Links . . . . . . . . . . . . . . . . . . . . . . 33 31
     3.6.  Router-ID Anchoring Example: ISO Pseudonode  . . . . . . . 31
     3.7.  Router-ID Anchoring Example: OSPFv2 to IS-IS Migration . . 32
   4.  Link to Path Aggregation . . . . . . . . . . . . . . . . . . . 33 32
     4.1.  Example: No Link Aggregation . . . . . . . . . . . . . . . 34 33
     4.2.  Example: ASBR to ASBR Path Aggregation . . . . . . . . . . 34 33
     4.3.  Example: Multi-AS Path Aggregation . . . . . . . . . . . . 35 34
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 35 34
   6.  Manageability Considerations . . . . . . . . . . . . . . . . . 35 34
     6.1.  Operational Considerations . . . . . . . . . . . . . . . . 35
       6.1.1.  Operations . . . . . . . . . . . . . . . . . . . . . . 36 35
       6.1.2.  Installation and Initial Setup . . . . . . . . . . . . 36 35
       6.1.3.  Migration Path . . . . . . . . . . . . . . . . . . . . 36 35
       6.1.4.  Requirements on Other Protocols and Functional
               Components . . . . . . . . . . . . . . . . . . . . . . 36 35
       6.1.5.  Impact on Network Operation  . . . . . . . . . . . . . 36 35
       6.1.6.  Verifying Correct Operation  . . . . . . . . . . . . . 37 36
     6.2.  Management Considerations  . . . . . . . . . . . . . . . . 37 36
       6.2.1.  Management Information . . . . . . . . . . . . . . . . 37 36
       6.2.2.  Fault Management . . . . . . . . . . . . . . . . . . . 37 36
       6.2.3.  Configuration Management . . . . . . . . . . . . . . . 37 36
       6.2.4.  Accounting Management  . . . . . . . . . . . . . . . . 37 36
       6.2.5.  Performance Management . . . . . . . . . . . . . . . . 37 36
       6.2.6.  Security Management  . . . . . . . . . . . . . . . . . 38 37
   7.  TLV/SubTLV  TLV/Sub-TLV Code Points Summary  . . . . . . . . . . . . . . . . 38 37
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 40 39
   9.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 40 39
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 40 39
   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 40
     11.1. Normative References . . . . . . . . . . . . . . . . . . . 40
     11.2. Informative References . . . . . . . . . . . . . . . . . . 42 41

   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 43 42

1.  Introduction

   The contents of a Link State Database (LSDB) or a Traffic Engineering
   Database (TED) has the scope of an IGP area.  Some applications, such
   as end-to-end Traffic Engineering (TE), would benefit from visibility
   outside one area or Autonomous System (AS) in order to make better
   decisions.

   The IETF has defined the Path Computation Element (PCE) [RFC4655] as
   a mechanism for achieving the computation of end-to-end TE paths that
   cross the visibility of more than one TED or which require CPU-
   intensive or coordinated computations.  The IETF has also defined the
   ALTO Server [RFC5693] as an entity that generates an abstracted
   network topology and provides it to network-aware applications.

   Both a PCE and an ALTO Server need to gather information about the
   topologies and capabilities of the network in order to be able to
   fulfill their function function.

   This document describes a mechanism by which Link State and TE
   information can be collected from networks and shared with external
   components using the BGP routing protocol [RFC4271].  This is
   achieved using a new BGP Network Layer Reachability Information
   (NLRI) encoding format.  The mechanism is applicable to physical and
   virtual links.  The mechanism described is subject to policy control.

   A router maintains one or more databases for storing link-state
   information about nodes and links in any given area.  Link attributes
   stored in these databases include: local/remote IP addresses, local/
   remote interface identifiers, link metric and TE metric, link
   bandwidth, reservable bandwidth, per CoS class reservation state,
   preemption and Shared Risk Link Groups (SRLG).  The router's BGP
   process can retrieve topology from these LSDBs and distribute it to a
   consumer, either directly or via a peer BGP Speaker (typically a
   dedicated Route Reflector), using the encoding specified in this
   document.

   The collection of Link State and TE link state information and its
   distribution to consumers is shown in the following figure.

                           +-----------+
                           | Consumer  |
                           +-----------+
                                 ^
                                 |
                           +-----------+
                           |    BGP    |               +-----------+
                           |  Speaker  |               | Consumer  |
                           +-----------+               +-----------+
                             ^   ^   ^                       ^
                             |   |   |                       |
             +---------------+   |   +-------------------+   |
             |                   |                       |   |
       +-----------+       +-----------+             +-----------+
       |    BGP    |       |    BGP    |             |    BGP    |
       |  Speaker  |       |  Speaker  |    . . .    |  Speaker  |
       +-----------+       +-----------+             +-----------+
             ^                   ^                         ^
             |                   |                         |
            IGP                 IGP                       IGP

                  Figure 1: TE Link State info collection

   A BGP Speaker may apply configurable policy to the information that
   it distributes.  Thus, it may distribute the real physical topology
   from the LSDB or the TED.  Alternatively, it may create an abstracted
   topology, where virtual, aggregated nodes are connected by virtual
   paths.  Aggregated nodes can be created, for example, out of multiple
   routers in a POP.  Abstracted topology can also be a mix of physical
   and virtual nodes and physical and virtual links.  Furthermore, the
   BGP Speaker can apply policy to determine when information is updated
   to the consumer so that there is reduction of information flow form
   the network to the consumers.  Mechanisms through which topologies
   can be aggregated or virtualized are outside the scope of this
   document

2.  Motivation and Applicability

   This section describes uses use cases from which the requirements can be
   derived.

2.1.  MPLS-TE with PCE

   As described in [RFC4655] a PCE can be used to compute MPLS-TE paths
   within a "domain" (such as an IGP area) or across multiple domains
   (such as a multi-area AS, or multiple ASes).

   o  Within a single area, the PCE offers enhanced computational power
      that may not be available on individual routers, sophisticated
      policy control and algorithms, and coordination of computation
      across the whole area.

   o  If a router wants to compute a MPLS-TE path across IGP areas its
      own TED lacks visibility of the complete topology.  That means
      that the router cannot determine the end-to-end path, and cannot
      even select the right exit router (Area Border Router - ABR) for
      an optimal path.  This is an issue for large-scale networks that
      need to segment their core networks into distinct areas, but which
      still want to take advantage of MPLS-TE.

   Previous solutions used per-domain path computation [RFC5152].  The
   source router could only compute the path for the first area because
   the router only has full topological visibility for the first area
   along the path, but not for subsequent areas.  Per-domain path
   computation uses a technique called "loose-hop-expansion" [RFC3209],
   and selects the exit ABR and other ABRs or AS Border Routers (ASBRs)
   using the IGP computed shortest path topology for the remainder of
   the path.  This may lead to sub-optimal paths, makes alternate/
   back-up path computation hard, and might result in no TE path being
   found when one really does exist.

   The PCE presents a computation server that may have visibility into
   more than one IGP area or AS, or may cooperate with other PCEs to
   perform distributed path computation.  The PCE obviously needs access
   to the TED for the area(s) it serves, but [RFC4655] does not describe
   how this is achieved.  Many implementations make the PCE a passive
   participant in the IGP so that it can learn the latest state of the
   network, but this may be sub-optimal when the network is subject to a
   high degree of churn, or when the PCE is responsible for multiple
   areas.

   The following figure shows how a PCE can get its TED information
   using the mechanism described in this document.

                +----------+                           +---------+
                |  -----   |                           |   BGP   |
                | | TED |<-+-------------------------->| Speaker |
                |  -----   |   TED synchronization     |         |
                |    |     |        mechanism:         +---------+
                |    |     | BGP with Link-State NLRI
                |    v     |
                |  -----   |
                | | PCE |  |
                |  -----   |
                +----------+
                     ^
                     | Request/
                     | Response
                     v
       Service  +----------+   Signaling  +----------+
       Request  | Head-End |   Protocol   | Adjacent |
       -------->|  Node    |<------------>|   Node   |
                +----------+              +----------+

     Figure 2: External PCE node using a TED synchronization mechanism

   The mechanism in this document allows the necessary TED information
   to be collected from the IGP within the network, filtered according
   to configurable policy, and distributed to the PCE as necessary.

2.2.  ALTO Server Network API

   An ALTO Server [RFC5693] is an entity that generates an abstracted
   network topology and provides it to network-aware applications over a
   web service based API.  Example applications are p2p clients or
   trackers, or CDNs.  The abstracted network topology comes in the form
   of two maps: a Network Map that specifies allocation of prefixes to
   Partition Identifiers (PIDs), and a Cost Map that specifies the cost
   between PIDs listed in the Network Map. For more details, see
   [I-D.ietf-alto-protocol].

   ALTO abstract network topologies can be auto-generated from the
   physical topology of the underlying network.  The generation would
   typically be based on policies and rules set by the operator.  Both
   prefix and TE data are required: prefix data is required to generate
   ALTO Network Maps, TE (topology) data is required to generate ALTO
   Cost Maps.  Prefix data is carried and originated in BGP, TE data is
   originated and carried in an IGP.  The mechanism defined in this
   document provides a single interface through which an ALTO Server can
   retrieve all the necessary prefix and network topology data from the
   underlying network.  Note an ALTO Server can use other mechanisms to
   get network data, for example, peering with multiple IGP and BGP
   Speakers.

   The following figure shows how an ALTO Server can get network
   topology information from the underlying network using the mechanism
   described in this document.

     +--------+
     | Client |<--+
     +--------+   |
                  |    ALTO    +--------+     BGP with    +---------+
     +--------+   |  Protocol  |  ALTO  | Link-State NLRI |   BGP   |
     | Client |<--+------------| Server |<----------------| Speaker |
     +--------+   |            |        |                 |         |
                  |            +--------+                 +---------+
     +--------+   |
     | Client |<--+
     +--------+

         Figure 3: ALTO Server using network topology information

3.  Carrying Link State Information in BGP

   This specification contains two parts: definition of a new BGP NLRI
   that describes links, nodes and prefixes comprising IGP link state
   information, and definition of a new BGP path attribute (BGP-LS
   attribute) that carries link, node and prefix properties and
   attributes, such as the link and prefix metric or node properties. auxiliary Router-
   IDs of nodes, etc.

3.1.  TLV Format

   Information in the new link state NLRIs and attributes is encoded in
   Type/Length/Value triplets.  The TLV format is shown in Figure 4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |
     //                        Value (variable)                      |
     |                                                               |                     //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 4: TLV format

   The Length field defines the length of the value portion in octets
   (thus a TLV with no value portion would have a length of zero).  The
   TLV is not padded to four-octet alignment.  Unrecognized types are
   ignored.
   preserved and propagated.  In order to compare NLRIs with unknown
   TLVs all TLVs MUST be ordered in ascending order.  If there are more
   TLVs of the same type, then the TLVs MUST be ordered in ascending
   order of the TLV value within the set of TLVs with the same type.
   All TLVs that are not specified as mandatory are considered optional.

3.2.  The Link State NLRI

   The MP_REACH and MP_UNREACH attributes are BGP's containers for
   carrying opaque information.  Each Link State NLRI describes either a
   node, a link or a prefix.

   All non-VPN link, node and prefix information SHALL be encoded using a TBD
   AFI 16388 / TBD SAFI header into those attributes. 71.  VPN link, node and prefix information SHALL be
   encoded using AFI 16388 / SAFI 128.

   In order for two BGP speakers to exchange Link-State NLRI, they MUST
   use BGP Capabilities Advertisement to ensure that they both are
   capable of properly processing such NLRI.  This is done as specified
   in [RFC4760], by using capability code 1 (multi-protocol BGP), with
   an AFI/SAFI TBD. AFI 16388 / SAFI 71 and AFI 16388 / SAFI 128 for the VPN flavor.

   The format of the Link State NLRI is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            NLRI Type          |     Total NLRI Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |
     //                  Link-State NLRI (variable)                  |                 //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 5: Link State AFI 16388 / SAFI (TBD) 71 NLRI Format

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            NLRI Type          |     Total NLRI Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                       Route Distinguisher                     +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |
     //                  Link-State NLRI (variable)                  |                 //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 6: Link State VPN AFI 16388 / SAFI 128 NLRI Format

   The 'Total NLRI Length' field contains the cumulative length length, in
   octets, of rest of the NLRI not including the NLRI Type field or
   itself.  For VPN applications it also includes the length of the
   Route Distinguisher.

   The 'NLRI Type' field can contain one of the following values:

      Type = 1: Link NLRI, contains link descriptors and link attributes Node NLRI

      Type = 2: Node NLRI, contains node attributes Link NLRI

      Type = 3: IPv4 Topology Prefix NLRI

      Type = 4: IPv6 Topology Prefix NLRI

   The Link Node NLRI (NLRI Type = 1) is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Identifier                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                         Identifier (variable)                            (64 bits)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
     //                Local Node Descriptors (variable)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                Remote Node Descriptors (variable)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   Link Descriptors (variable)                 |            //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 7: The Link Node NLRI format

   The Node Link NLRI (NLRI Type = 2) is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Identifier                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                       Identifier (variable)                            (64 bits)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
     //               Local Node Descriptors (variable)              |             //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //               Remote Node Descriptors (variable)            //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                  Link Descriptors (variable)                //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 8: The Node Link NLRI format

   The IPv4 and IPv6 Prefix NLRIs (NLRI Type = 3 and Type = 4) use the
   same format as shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Identifier                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                    Identifier (variable)                            (64 bits)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
     //              Local Node Descriptor (variable)           |               //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Reachability information (variable; one or more prefixes)    |
     //                Prefix Descriptors (variable)                //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 9: The IPv4/IPv6 Topology Prefix NLRI format

   The 'Protocol-ID' field can contain one of the following values:

      Protocol-ID = 0: Unknown, The source of NLRI information could not
      be determined

      Protocol-ID = 1: IS-IS Level 1, The NLRI information has been
      sourced by IS-IS Level 1

      Protocol-ID = 2: IS-IS Level 2, The NLRI information has been
      sourced by IS-IS Level 2
      Protocol-ID = 3: OSPF, The NLRI information has been sourced by
      OSPF

      Protocol-ID = 4: Direct, The NLRI information has been sourced
      from local interface state

      Protocol-ID = 5: Static, The NLRI information has been sourced by
      static configuration

   Both OSPF and IS-IS may run multiple routing protocol instances over
   the same link.  See [RFC6822] and [RFC6549].

   Identifier TLV  These instances define
   independent "routing universes".  The 64-Bit 'Identifier' field is a mandatory TLV containing identifiers of the NLRI
   and
   used to associate identify the "routing universe" where the NLRI to an instance, a domain, an area belongs.  The
   NLRIs representing IGP objects (nodes, links or a
   prefix. prefixes) from the
   same routing universe MUST have the same 'Identifier' value; NLRIs
   with different 'Identifier' values MUST be considered to be from
   different routing universes.  Table Table 1 lists the 'Identifier'
   values that are defined as well-known in this draft.

                   +------------+---------------------+
                   | Identifier | Routing Universe    |
                   +------------+---------------------+
                   |      0     | L3 packet topology  |
                   |      1     | L1 optical topology |
                   +------------+---------------------+

                 Table 1: Well-known Instance Identifiers

   Each Node Descriptor and Link Descriptor consists of one or more TLVs
   described in the following sections.  The sender of an UPDATE message
   MUST order the TLVs within a Node Descriptor or a Link Descriptor in
   ascending order of TLV type.

3.2.1.  Identifier TLV

   Identifier TLV (Type 256)  Node Descriptors

   Each link is anchored by a mandatory TLV pair of Router-IDs that appear in Node,
   Link are used by the
   underlying IGP, namely, 48 Bit ISO System-ID for IS-IS and Prefix NLRIs.  Identifier TLV carries all identifiers
   associated with 32 bit
   Router-ID for OSPFv2 and OSPFv3.  An IGP may use one or more
   additional auxiliary Router-IDs, mainly for traffic engineering
   purposes.  For example, IS-IS may have one or more IPv4 and IPv6 TE
   Router-IDs [RFC5305], [RFC6119].  These auxiliary Router-IDs MUST be
   included in the NLRI link attribute described in a SubTLV format.  Possible Sub TLVs are
   Instance Identifier, Domain Identifier, Area Identifier, OSPF Route
   Type and Multi-Topology ID.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Identifier Sub-TLVs (variable)                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 256
       Length: variable
       Identifier Sub-TLVs: Identifiers

                     Figure 10: Identifier TLV Format

   An Identifier Section Section 3.3.2.

   It is desirable that the Router-ID assignments inside the Node
   Descriptor are globally unique.  However there may be used to distinguish a Node, a Link Router-ID
   spaces (e.g.  ISO) where no global registry exists, or a Prefix
   with different types of identifiers.  Therefore different SubTLVs are
   defined here below worse, Router-
   IDs have been allocated following private-IP RFC 1918 [RFC1918]
   allocation.  We use Autonomous System (AS) Number and BGP-LS
   Identifier in order to address disambiguate the different requirements. Router-IDs, as described in
   Section 3.2.1.1.  Instance Identifier SubTLV

   Instance Identifier is a mandatory SubTLV

3.2.1.1.  Globally Unique Node/Link/Prefix Identifiers

   One problem that MUST needs to be present in all
   NLRIs.  It addressed is used the ability to identify an
   IGP node globally (by "global", we mean within the topology instance BGP-LS database
   collected by all BGP-LS speakers that talk to each other).  This can
   be expressed through the following two requirements:

   (A) The same node must not be represented by two keys (otherwise one
   node will look like two nodes).

   (B) Two different nodes must not be represented by the same key
   (otherwise, two nodes will look like one node).

   We define an "IGP domain" to be the content set of nodes (hence, by extension
   links and prefixes), within which, each node has a unique IGP
   representation by using the NLRI combination of Area-ID, Router-ID,
   Protocol, Topology-ID, and attributes refers to. Instance ID.  The problem is that BGP may
   receive node/link/prefix information from multiple independent "IGP
   domains" and we need to distinguish between them.  Moreover, we can't
   assume there is always one and only one IGP domain per AS.  During
   IGP transitions it may happen that two redundant IGPs are in place.

   In section Section 3.2.1.4 a set of sub-TLVs is described, which
   allows to specify a flexible key for any given Node/Link information
   such that global uniqueness of the NLRI is ensured.

3.2.1.2.  Local Node Descriptors

   The Local Node Descriptors TLV contains Node Descriptors for the node
   anchoring the local end of the link.  This is a mandatory TLV in all
   three types of NLRIs.  The length of this TLV is variable.  The value
   contains one or more Node Descriptor Sub-TLVs defined in
   Section 3.2.1.4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Instance Identifier                                                               |
     //              Node Descriptor Sub-TLVs (variable)            //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 1
       Length: variable

               Figure 11: Instance Identifier Sub-TLV Format

3.2.1.2.  Domain Identifier SubTLV

   Domain Identifier 10: Local Node Descriptors TLV format

3.2.1.3.  Remote Node Descriptors

   The Remote Node Descriptors contains Node Descriptors for the node
   anchoring the remote end of the link.  This is an optional SubTLV that MAY be present in all a mandatory TLV for
   link NLRIs.  It  The length of this TLV is used to identify the domain (or sub-domain) to which
   the NLRI belongs. variable.  The value contains
   one or more Node Descriptor Sub-TLVs defined in Section 3.2.1.4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Domain Identifier                                                               |
     //              Node Descriptor Sub-TLVs (variable)            //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 2
       Length: variable

               Figure 12: Domain Identifier 11: Remote Node Descriptors TLV format

3.2.1.4.  Node Descriptor Sub-TLVs

   The Node Descriptor Sub-TLV Format

3.2.1.3.  Area Identifier SubTLV

   Area Identifier is an optional SubTLV that MAY be present type codepoints and lengths are listed in all
   NLRIs.
   the following table:

           +--------------------+-------------------+----------+
           | Sub-TLV Code Point | Description       |   Length |
           +--------------------+-------------------+----------+
           |         512        | Autonomous System |        4 |
           |         513        | BGP-LS Identifier |        4 |
           |         514        | Area-ID           |        4 |
           |         515        | IGP Router-ID     | Variable |
           +--------------------+-------------------+----------+

                     Table 2: Node Descriptor Sub-TLVs

   The sub-TLV values in Node Descriptor TLVs are defined as follows:

   Autonomous System:  opaque value (32 Bit AS Number)

   BGP-LS Identifier:  opaque value (32 Bit ID).  In conjunction with
      ASN, uniquely identifies the BGP-LS domain.  The combination of
      ASN and BGP-LS ID MUST be globally unique.  All BGP-LS speakers
      within an IGP flooding-set (set of IGP nodes within which an LSP/
      LSA is flooded) MUST use the same ASN, BGP-LS ID tuple.  If an IGP
      domain consists of multiple flooding-sets, then all BGP-LS
      speakers within the IGP domain SHOULD use the same ASN, BGP-LS ID
      tuple.  The ASN, BGP Router-ID tuple (which is globally unique
      [RFC6286] ) of one of the BGP-LS speakers within the flooding-set
      (or IGP domain) may be used for all BGP-LS speakers in that
      flooding-set (or IGP domain).

   Area ID:  It is used to identify the 32 Bit area to which the NLRI
      belongs.
   Example: an OSPF ABR router advertises itself multiple time (one for
   each area it participates into).  Area Identifier allows the different NLRIs of the same
      router to be discriminated.
      0                   1                   2                   3
      0 1 2 3 4 5

   IGP Router ID:  opaque value.  This is a mandatory TLV.  For an IS-IS
      non-Pseudonode, this contains 6 7 8 9 0 1 2 3 4 5 octet ISO node-ID (ISO system-ID).
      For an IS-IS Pseudonode corresponding to a LAN, this contains 6 7 8 9 0 1 2 3
      octet ISO node-ID of the "Designated Intermediate System" (DIS)
      followed by one octet nonzero PSN identifier (7 octet in total).
      For an OSPFv2 or OSPFv3 non-"Pseudonode", this contains 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Area Identifier (variable)                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 3
       Length:variable

                 Figure 13: Area Identifier Sub-TLV Format

3.2.1.4.  OSPF Route Type SubTLV

   Route Type is octet
      Router-ID.  For an optional SubTLV that MAY be present OSPFv2 "Pseudonode" representing a LAN, this
      contains 4 octet Router-ID of the designated router (DR) followed
      by 4 octet IPv4 address of the DR's interface to the LAN (8 octet
      in total).  Similarly, for an OSPFv3 "Pseudonode", this contains 4
      octet Router-ID of the Prefix
   NLRIs.  It is used DR followed by 4 octet interface identifier
      of the DR's interface to identify the OSPF route-type LAN (8 octet in total).  The TLV size
      in combination with protocol identifier enables the decoder to
      determine the type of the prefix.  It
   is used node.

      There can be at most one instance of each sub-TLV type present in
      any Node Descriptor.  The TLV ordering within a Node descriptor
      MUST be kept in order of increasing numeric value of type.  This
      needs to be done in order to compare NLRIs, even when an
      implementation encounters an unknown sub-TLV.  Using stable
      sorting an implementation can do binary comparison of NLRIs and
      hence allow incremental deployment of new key sub-TLVs.

3.2.1.5.  Multi-Topology ID

   The Multi-Topology ID (MT-ID) TLV carries one or more IS-IS or OSPF prefix is advertised
   Multi-Topology IDs for a link, node or prefix.

   Semantics of the IS-IS MT-ID are defined in RFC5120, Section 7.2
   [RFC5120].  Semantics of the OSPF domain with
   multiple different route-types.  The Route Type Identifier allows MT-ID are defined in RFC4915,
   Section 3.7 [RFC4915].  If the value in the MT-ID TLV is derived from
   OSPF, then the upper 9 bits MUST be set to
   discriminate these advertisements. 0.  Bits R are reserved,
   SHOULD be set to 0 when originated and ignored on receipt.

   The format of the MT-ID TLV is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length          Length=2*n           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Route Type   |
     +-+-+-+-+-+-+-+-+

   Where:

       Type: 4
       Length:
     |R R R R|  Multi-Topology ID 1  |             ....             //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //             ....             |R R R R|  Multi-Topology ID n  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 14: OSPF Route Type Sub-TLV Format

   OSPF Route 12: Multi-Topology ID TLV format

   where Type can be either: Intra-Area (0x1), Inter-Area (0x2),
   External 1 (0x3), External 2 (0x4), NSSA (0x5) is 263, Length is 2*n and n is encoded the number of MT-IDs
   carried in a 3
   bits number.  For prefixes learned from IS-IS, this field MUST to be
   set to 0x0 on transmission.

3.2.1.5.  Multi Topology ID SubTLV

   The Multi Topology ID SubTLV (type: 5) carries the Multi Topology ID
   for TLV.

   The MT-ID TLV MAY be present in a Link Descriptor, a Prefix
   Descriptor, or in the link, BGP-LS attribute of a node NLRI.  In Link or prefix.  The semantics
   Prefix Descriptor, only one MT-ID TLV containing only the MT-ID of
   the Multi Topology ID
   are defined in RFC5120, Section 7.2 [RFC5120], and topology where the OSPF Multi
   Topology ID), defined in RFC4915, Section 3.7 [RFC4915].  If link or the
   value in prefix belongs is allowed.  In the Multi Topology ID
   BGP-LS attribute of a node NLRI, one MT-ID TLV is derived from OSPF, then containing the
   upper 9 bits array
   of MT-IDs of all topologies where the Multi Topology ID are node belongs can be present.

3.2.2.  Link Descriptors

   The 'Link Descriptor' field is a set to 0.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |R R R R|   Multi Topology ID   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 15: Multi Topology ID SubTLV format of Type/Length/Value (TLV)
   triplets.  The Multi Topology Identifier SubTLV format of each TLV is present shown in any NLRI Type.

3.2.2.  Node Descriptors

   Each Section 3.1.  The 'Link
   descriptor' TLVs uniquely identify a link gets anchored by at least among multiple parallel
   links between a pair of router-IDs.  Since
   there are many Router-IDs formats (32 Bit IPv4 router-ID, 56 Bit ISO
   Node-ID and 128 Bit IPv6 router-ID) a link may be anchored by more
   than one Router-ID pair.  The set of Local and Remote Node
   Descriptors describe which Protocols Router-IDs will be following to
   "anchor" the anchor routers.  A link described by the "Link attribute TLVs".  There must
   be at least one "like" router-ID pair Link
   descriptor TLVs actually is a "half-link", a unidirectional
   representation of a Local Node Descriptors and logical link.  In order to fully describe a Remote Node Descriptors per-protocol.  If
   single logical link two originating routers advertise a peer sends an illegal
   combination in this respect, then this is handled as an NLRI error,
   described in [RFC4760].

   It is desirable that the Router-ID assignments inside the Node anchor half-link
   each, i.e. two link NLRIs are globally unique.  However there may be router-ID spaces (e.g.
   ISO) where not even advertised for a global registry exists, or worse, Router-IDs
   have been allocated following private-IP RFC 1918 [RFC1918]
   allocation.  We use AS Number (or Confederation ID) given point-to-point
   link.

   The format and BGP
   Identifier in order to disambiguate semantics of the Router-IDs, as described 'value' fields in
   Section 3.2.2.4.

3.2.2.1.  Local Node Descriptors

   The Local Node Descriptors TLV (Type 257) contains Node Descriptors
   for the node anchoring the local end of most 'Link
   Descriptor' TLVs correspond to the link.  The length format and semantics of this
   TLV is variable.  The value contains one or more Node Descriptor Sub-
   TLVs
   fields in IS-IS Extended IS Reachability sub-TLVs, defined in Section 3.2.2.3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   [RFC5305], [RFC5307] and [RFC6119].  Although the encodings for 'Link
   Descriptor' TLVs were originally defined for IS-IS, the TLVs can
   carry data sourced either by IS-IS or OSPF.

   The following TLVs are valid as Link Descriptors in the Link NLRI:

   +-----------+---------------------+---------------+-----------------+
   |              Type  TLV Code |             Length Description         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     IS-IS     | Value defined   |
   |               Node Descriptor Sub-TLVs (variable)   Point   |                     |  TLV/Sub-TLV  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 16: Local Node Descriptors TLV format

3.2.2.2.  Remote Node Descriptors

   The Remote Node Descriptors TLV (Type 258) contains Node Descriptors
   for the node anchoring the remote end of the link.  The length of
   this TLV is variable.  The value contains one or more Node Descriptor
   Sub-TLVs defined in Section 3.2.2.3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ in:             |              Type
   +-----------+---------------------+---------------+-----------------+
   |             Length    258    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Link Local/Remote   |      22/4     | [RFC5307]/1.1   |               Node Descriptor Sub-TLVs (variable)
   |           | Identifiers         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 17: Remote Node Descriptors TLV format

3.2.2.3.  Node Descriptor Sub-TLVs

   The Node Descriptor Sub-TLV type codepoints and lengths are listed in
   the following table:

               +------------+-------------------+----------+               | TLV/SubTLV                 | Description
   |   Length    259    |
               +------------+-------------------+----------+ IPv4 interface      |     259      22/6     | [RFC5305]/3.2   |
   |           | address             | Autonomous System               |        4                 |
   |    260    | BGP Identifier IPv4 neighbor       |      22/8     | [RFC5305]/3.3   |
   |           | address             |               |        4                 |
   |    261    | ISO Node-ID IPv6 interface      |        7     22/12     | [RFC6119]/4.2   |     262
   | IPv4 Router-ID           | variable address             |               |     263                 |
   |    262    | IPv6 Router-ID neighbor       |       16     22/13     |
               +------------+-------------------+----------+

                     Table 1: Node Descriptor Sub-TLVs

   The TLV values in Node [RFC6119]/4.3   |
   |           | address             |               |                 |
   |    263    | Multi-Topology      |      ---      | Section 3.2.1.5 |
   |           | Identifier          |               |                 |
   +-----------+---------------------+---------------+-----------------+

                       Table 3: Link Descriptor Sub-TLVs are defined as follows:

   Autonomous System:  opaque value (32 Bit AS Number)

   BGP-Identifier:  opaque value (32 Bit AS ID); TLVs

3.2.3.  Prefix Descriptors

   The 'Prefix Descriptor' field is a set of Type/Length/Value (TLV)
   triplets.  'Prefix Descriptor' TLVs uniquely identifying
      the BGP-LS speaker within an AS.

   IPv4 Router ID:  opaque value (can be identify an IPv4 address or an 32 Bit
      router ID).  When encoding an OSPF Designated Router ID, the
      length is 8 (first 4 bytes is the Router-ID originating the Type-2
      LSA and next 4 bytes are taken from the Type-2 LSA ID).  In other
      cases, the length is 4.

   IPv6 Router ID:  opaque value (can be an IPv6 address or 128 Bit
      router ID).

   ISO Node ID:  ISO node-ID (6 octets ISO system-ID) followed
   Prefix originated by a PSN
      octet in case LAN "Pseudonode" information gets advertised.  The
      PSN octet must be zero for non-LAN "Pseudonodes".

      There can be at most one instance of each TLV type present in any
      Node Descriptor.  The TLV ordering within a Node descriptor MUST
      be kept in order of increasing numeric value of type.  TLVs 259
      and 260 specify administrative context in which TLVs 261-263 are
      to be evaluated. Node.  The first TLV from range 261-263 is to be
      interpreted as the primary node identifier by which the node can
      be referenced within its administrative contexts.  Any further following TLVs are to be treated as secondary identifiers, which may be used
      for cross-reference, but are to be treated valid as if they are object
      attributes.

3.2.2.4.  Globally Unique BGP-LS Identifiers

   One problem that needs to be addressed is Prefix
   Descriptors in the ability to identify an
   IGP node globally (by "global", we mean within the BGP-LS database
   collected by all BGP-LS speakers that talk to each other).  This can
   be expressed through the following two requirements:

   (A) The same node must not be represented by two keys (otherwise one
   node will look like two nodes).

   (B) Two different nodes must not be represented by the same key
   (otherwise, two nodes will look like one node).

   We define an "IGP domain" to be the set of nodes (and links), within
   which, each node has a unique IGP representation by using the
   combination of area-id, IGP router-id, Level, instance ID, etc.  The
   problem is that BGP brings nodes from multiple independent "IGP
   domains" and we need to distinguish between them.  Moreover, we can't
   assume there is always one and only one IGP domain per Autonomous
   System (or Autonomous System confederation member).  Following cases
   illustrate scenario's where IGP domain and ASs boundaries do not
   match.

   (i) Stub ASs or non-contiguous AS: One can have an AS that has
   disjoint parts, each running an independent IGP domain.

   IGP domain 1      IGP domain 2
      AS 1              AS 1
     +---+             +---+
     |   | IPv4/IPv6 Prefix NLRI:

   +--------------+-----------------------+----------+-----------------+
   |   TLV Code   |
     +---+             +---+
          \           /
           +---------+ Description           |  Length  |
           +---------+
            Transit AS

                 Figure 18: Stub-ASs or non-contiguous AS

   Using ASN to globally identify IGP node may break requirement (B).

   (ii) It is possible to run the same IGP domain across multiple AS.

        +----------------------+ Value defined   | +------+   +------+
   |     Point    |                       | AS 1          | in:             | AS 2
   +--------------+-----------------------+----------+-----------------+
   |      263     | Multi-Topology        | +------+   +------+ variable |
        +----------------------+
             IGP domain

                           Figure 19: IGP Domain

   Using ASN to globally identify IGP node will break requirement (A).

   (iii) It is possible to run IGP across member-ASs in a confederation.

      +-------------------------------+ Section 3.2.1.5 | +--------------------------+
   |              | Identifier            | +--------+   +--------+          |                 |
   |      264     | OSPF Route Type       | member     1    | Section 3.2.3.1 | member
   |      265     | IP Reachability       | variable | Section 3.2.3.2 |
   | AS 1              | Information           | AS 2          |                 |  |
      | | +--------+   +--------+  |  |
      | +--------------------------+  |
      |       IGP domain              |
      +-------------------------------+
         Confederation (confed-id 1)

                         Figure 20: Confederation

   Using a Confederation/MemberAS identifier
   +--------------+-----------------------+----------+-----------------+

                      Table 4: Prefix Descriptor TLVs

3.2.3.1.  OSPF Route Type

   OSPF Route Type is an optional TLV that MAY be present in Prefix
   NLRIs.  It is used to globally identify IGP
   node will break requirement (A).

   (iv) the OSPF route-type of the prefix.  It
   is possible to run more than one IGP domain within used when an AS by
   setting up "transit BGP speakers".

      +---------------------------------+
      | +----------+       +----------+ |
      | | IGP      | +---+ | IGP      | |
      | | OSPF prefix is advertised in the OSPF domain with
   multiple different route-types.  The Route Type TLV allows to
   discriminate these advertisements.  The format of the OSPF Route Type
   TLV is shown in the following figure.

      0                   1 +-+   +-+ domain                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            | +----------+ +---+ +----------+ |
      |                ^                |
      |                |                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Transit BGP node  Route Type   |
      +---------------------------------+
                     AS 1
     +-+-+-+-+-+-+-+-+

                   Figure 21: Transit BGP Node

   Using ASN to globally identify IGP node may break requirement (A).

   In summary, there is no strict relation between BGP AS division and
   IGP domains.  Therefore, the following mechanism is proposed to
   address 13: OSPF Route Type TLV Format

   where the requirements.  We assume that a BGP-LS speaker is
   collocated with one Type and only one IGP node.  The BGP-LS speaker
   originates BGP-LS NLRIs that correspond to Length fields of the objects TLV are defined in the LSDB of
   that IGP node.

   We embed a "string" (identifier) Table 4.
   The OSPF Route Type field values are defined in the node descriptor to globally
   identify the node.  The question is how we construct such a string, OSPF protocol,
   and what should be the scope of such a string so that the
   construction of the string can be simple.  Let the set of IGP nodes
   within which LSA/LSP flooding is limited to be the "flooding set".
   Consider a given "flooding set".  We have the following three
   possibilities:

   Case a) There is no BGP LS speaker running on any node in the
   flooding set.

   Case b) There is one BGP LS speaker running on one node in of the
   flooding set.

   Case c) There following:

      Intra-Area (0x1)

      Inter-Area (0x2)

      External 1 (0x3)

      External 2 (0x4)

      NSSA 1 (0x5)

      NSSA 2 (0x6)

3.2.3.2.  IP Reachability Information

   The IP Reachability Information is more than one BGP LS speakers running on the nodes
   in the flooding set.

   For Case a), the nodes in a mandatory TLV that flooding set do not appear contains one
   IP address prefix (IPv4 or IPv6) originally advertised in BGP LS
   database.  So we can ignore that case for this discussion.  To
   satisfy requirement (B), the string we use in different IGP domains
   must be different.  One possible approach is as follows:

   Approach 1) The user configures a unique "string" on all BGP LS
   speakers within one IGP domain.

   Now we make an observation that simplifies the task: it
   topology.  Its purpose is sufficient to have a unique "string" per flooding set.

   When we have glue a unique string per flooding set, then two nodes in
   different IGP domains, which by definition belong particular BGP service NLRI vi
   virtue of its BGP next-hop to different
   flooding sets, would have different "strings".  So requirement B) is
   satisfied.  On the other hand, a given node appears only Node in the LSDB LSDB.  A router
   SHOULD advertise an IP Prefix NLRI for each of the nodes in the same flooding set.  So a given node will always
   have only one "string" and we satisfy requirement A).  Given this, we
   have:

   Approach 2) Each BGP LS speaker uses the <Autonomous System Number, its BGP Identifier> as the string. Next-hops.
   The combination format of <Autonomous System, BGP Identifier> is globally
   unique, as per [RFC6286].

   For Case b), which the IP Reachability Information TLV is shown in the simplest BGP-LS deployment scenario, this
   approach requires no additional configuration from the user.

   For Case c), however, if each BGP-LS speaker in the given flooding
   set attaches its own <Autonomous System, BGP Identifier>, then we
   will violate requirement A).  So that case, the user needs to choose
   one
   following figure:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Prefix Length | IP Prefix (variable)                         //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 14: IP Reachability Information TLV Format

   The Type and Length fields of the BGP-LS speakers TLV are defined in Table 4.  The
   following two fields determine the flooding set as the "chosen
   speaker" and configure address-family reachability
   information.  The 'Prefix Length' field contains the rest length of the BGP-LS speakers
   prefix in that
   flooding set to use the <Autonomous System, BGP Identifier>
   combination of bits.  The 'IP Prefix' field contains the "chosen speaker".

   When an IGP node belongs to two or more flooding sets, it views
   itself as a collocation most significant
   octets of one node per flooding set and accordingly
   encodes the NLRIs.  Consider the following example:

   Level-1     level-1-2       level-1
      N1          N0            N2
     +---+ link1 +---+ link 2  +---+
     |   +-------+   +---------+   |
     +---+       +---+         +---+
   |<- Level prefix; i.e., 1 ->|   |<- level octet for prefix length 1 up to 8, 2 ->|
        L11                L12
       "str1"             "str2"

               Figure 22: IGP Node in multiple flooding sets

   The node N0 is a level 1-2 node.  Link1 belongs
   octets for prefix length 9 to level 1 area L11,
   which has string "str1".  Link2 belongs 16, 3 octets for prefix length 17 up to level 1 area L12 which has
   string "str2".  N0 has both link1
   24 and link2 in its LSDB.  If 4 octets for prefix length 25 up to 32, etc.

3.3.  The LINK_STATE Attribute

   This is an optional, non-transitive BGP LS
   speaker attribute that is running on N0, then N0 views itself as a collocation of
   two nodes: N0(L11) used to
   carry link, node and N0(L12) prefix parameters and originate <str1, N1, N0> and
   <str2, N0, N2>.

   To sum up, the mechanism works as follows:

      1.  We use <Autonomous System, BGP Identifier> attributes.  It is defined
   as the
      disambiguating string.

      2.  By default, a BGP-LS speaker uses its own ASN, BGP identifier
      (router-id) for these fields for the NLRIs it originates.

      3.  Operator has set of Type/Length/Value (TLV) triplets, described in the ability to configure
   following section.  This attribute SHOULD only be included with Link
   State NLRIs.  This attribute MUST be ignored for all other <ASN, BGP ID> per
      flooding set address-
   families.

3.3.1.  Node Attribute TLVs

   Node attribute TLVs are the IGP node underneath belongs to.  In TLVs that case, may be encoded in the node descriptor(s) for BGP-LS
   attribute with a given NLRI uses the string
      corresponding to the flooding set where the node belongs. NLRI.  The operator needs to provide the configuration if there are multiple
   BGP-LS speakers running in the same flooding set.

3.2.2.5.  Router-ID Anchoring Example: ISO Pseudonode

   IS-IS Pseudonodes following node attribute TLVs are a good example for the
   defined:

   +--------------+-----------------------+----------+-----------------+
   |   TLV Code   | Description           |   Length | Value defined   |
   |     Point    |                       |          | in:             |
   +--------------+-----------------------+----------+-----------------+
   |      263     | Multi-Topology        | variable Router-ID
   anchoring.  Consider Figure 23.  This represents a Broadcast LAN
   between a pair of routers.  The "real" (=non pseudonode) routers have
   both an IPv4 Router-ID and IS-IS Node-ID.  The pseudonode does not
   have an IPv4 Router-ID.  Two unidirectional links (Node1, Pseudonode
   1) and (Pseudonode 1, Node 2) are being generated.

   The NRLI for (Node1, Pseudonode1) encodes local IPv4 router-ID, local
   ISO node-ID and remote ISO node-id)

   The NLRI for (Pseudonode1, Node2) encodes a local ISO node-ID and
   remote ISO node-id.

     +-----------------+    +-----------------+    +-----------------+ |      Node1 Section 3.2.1.5 |
   |   Pseudonode              | Identifier            |          |                 |
   |     1024     | Node Flag Bits        |        1 | Section 3.3.1.1 |      Node2
   |
     |1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00|     1025     |     192.0.2.1 Opaque Node           | variable | Section 3.3.1.5 |
   |     192.0.2.2              |
     +-----------------+    +-----------------+    +-----------------+

                       Figure 23: IS-IS Pseudonodes

3.2.2.6.  Router-ID Anchoring Example: OSPFv2 to IS-IS Migration

   Migrating gracefully from one IGP to another requires congruent
   operation of both routing protocols during the migration period.  The
   target protocol (IS-IS) supports more router-ID spaces than the
   source (OSPFv2) protocol.  When advertising a point-to-point link
   between an OSPFv2-only router and an OSPFv2 and IS-IS enabled router
   the following link information may be generated.  Note that the IS-IS
   router also supports the IPv6 traffic engineering extensions RFC 6119

   [RFC6119] for IS-IS.

   The NRLI encodes local IPv4 router-id, remote IPv4 router-id, remote
   ISO node-id and remote IPv6 node-id.

3.2.3.  Link Descriptors

   The 'Link Descriptor' field is a set of Type/Length/Value (TLV)
   triplets.  The format of each TLV is shown in Section 3.1.  The 'Link
   descriptor' TLVs uniquely identify a link between a pair of anchor
   Routers.  A link described by the Link descriptor TLVs actually is a
   "half-link", a unidirectional representation of a logical link.  In
   order to fully describe a single logical link two originating routers
   need to advertise a half-link each, i.e. two link NLRIs will be
   advertised.

   The format and semantics of the 'value' fields in most 'Link
   Descriptor' TLVs correspond to the format and semantics of value
   fields in IS-IS Extended IS Reachability sub-TLVs, defined in
   [RFC5305], [RFC5307] and [RFC6119].  Although the encodings for 'Link
   Descriptor' TLVs were originally defined for IS-IS, the TLVs can
   carry data sourced either by IS-IS or OSPF.

   The following link descriptor TLVs are valid in the Link NLRI:

   +------------+--------------------+---------------+-----------------+
   | TLV/SubTLV | Description Properties            |     IS-IS          | Value defined                 |
   |     1026     | Node Name             |  TLV/Sub-TLV variable | in: Section 3.3.1.3 |
   +------------+--------------------+---------------+-----------------+
   |     264     1027     | Link Local/Remote IS-IS Area Identifier |      22/4 variable | [RFC5307]/1.1 Section 3.3.1.2 |
   |            | Identifiers        |               |                 |
   |     265    | IPv4 interface     |      22/6     | [RFC5305]/3.2   |
   |            | address            |               |                 |
   |     266     1028     | IPv4 neighbor      |      22/8     | [RFC5305]/3.3   |
   |            | address            |               |                 |
   |     267    | IPv6 interface Router-ID of     |     22/12        4 | [RFC6119]/4.2 [RFC5305]/4.3   |
   |              | address Local Node            |          |                 |
   |     268     1029     | IPv6 neighbor      |     22/13     | [RFC6119]/4.3   |
   |            | address Router-ID of     |       16 | [RFC6119]/4.1   |
   |    256/5              | Multi Topology ID Local Node            |      ---          | Section 3.2.1.5                 |
   +------------+--------------------+---------------+-----------------+
   +--------------+-----------------------+----------+-----------------+

                       Table 2: Link Descriptor 5: Node Attribute TLVs

3.2.4.  Prefix Descriptors

3.3.1.1.  Node Flag Bits TLV

   The 'Prefix descriptor' TLVs uniquely identify Node Flag Bits TLV carries a Prefix (IPv4 or
   IPv6) originated by bit mask describing node attributes.
   The value is a Node. variable length bit array of flags, where each bit
   represents a node capability.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |O|T|E|A| Reserved|
     +-+-+-+-+-+-+-+-+-+

                   Figure 15: Node Flag Bits TLV format

   The following Prefix descriptor TLVs bits are valid in the IPv4/IPv6
   Prefix NLRI:

   +------------+-----------------+-----------------+------------------+ defined as follows:

            +----------+-------------------------+-----------+
            | TLV/SubTLV    Bit   | Description             |      IS-IS Reference | Value defined
            +----------+-------------------------+-----------+
            |    'O'   | Overload Bit            | [RFC1195] |   TLV/Sub-TLV
            | in:    'T'   |
   +------------+-----------------+-----------------+------------------+ Attached Bit            |    256/5 [RFC1195] | Multi Topology
            |       ---    'E'   | Section 3.2.1.5 External Bit            | [RFC2328] |
            | ID    'A'   | ABR Bit                 | [RFC2328] |
            | Reserved | Reserved for future use |           |
   +------------+-----------------+-----------------+------------------+
            +----------+-------------------------+-----------+

                    Table 3: Prefix Descriptor TLVs

3.2.4.1.  The Prefix NLRI

   The Prefix NLRI is a variable length field that contains 6: Node Flag Bits Definitions

3.3.1.2.  IS-IS Area Identifier TLV

   An IS-IS node can be part of one or more
   IP address prefixes (IPv4 or IPv6) originally advertised IS-IS areas.  Each of these
   area addresses is carried in the IGP
   topology. IS-IS Area Identifier TLV.  If more
   than one Area Addresses are present, multiple TLVs are used to encode
   them.  The NLRI Type determines IS-IS Area Identifier TLV may be present in the address-family.  Reachability
   information is encoded as one or more 2-tuples of LINK_STATE
   attribute only with the form <length,
   prefix>, whose fields are described below:

                     +---------------------------+ Link State Node NLRI.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Length (1 octet)              Type             |
                     +---------------------------+             Length            |   Prefix
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                 Area Identifier (variable)       |
                     +---------------------------+                  //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 24: Prefix NLRI format 16: IS-IS Area Identifier TLV Format

3.3.1.3.  Node Name TLV

   The Node Name TLV is optional.  Its structure and encoding has been
   borrowed from [RFC5301].  The 'Length' value field contains identifies the length symbolic
   name of the prefix in bits.  Only router node.  This symbolic name can be the most significant octets FQDN for the
   router, it can be a subset of the prefix are encoded.  I.e. 1 octet
   for prefix length 1 up to 8, 2 octets for prefix length 9 to 16, 3
   octets for prefix length 17 up FQDN, or it can be any string
   operators want to 24 and 4 octets use for prefix length
   25 up to 32, etc.

3.3. the router.  The LINK_STATE Attribute

   This use of FQDN or a subset of
   it is an optional, non-transitive BGP attribute that strongly recommended.

   The Value field is used to
   carry link, node and prefix parameters and attributes.  It encoded in 7-bit ASCII.  If a user-interface for
   configuring or displaying this field permits Unicode characters, that
   user-interface is defined responsible for applying the ToASCII and/or
   ToUnicode algorithm as a set of Type/Length/Value (TLV) triplets, described in [RFC3490] to achieve the
   following section.  This attribute SHOULD only be included with Link
   State NLRIs.  This attribute MUST be ignored correct
   format for all other NLRIs.

3.3.1.  Link Attribute TLVs

   Each 'Link Attribute' transmission or display.

   Altough [RFC5301] is a Type/Length/Value (TLV) triplet formatted
   as defined in Section 3.1.  The format IS-IS specific extension, usage of the Node
   Name TLV is possible for all protocols.  How a router derives and semantics
   injects node names for e.g.  OSPF nodes, is outside of the 'value'
   fields in some 'Link Attribute' scope of
   this document.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                     Node Name (variable)                    //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 17: Node Name format

3.3.1.4.  Local IPv4/IPv6 Router-ID

   The local IPv4/IPv6 Router-ID TLVs correspond are used to describe auxiliary
   Router-IDs that the format IGP might be using, e.g., for TE and
   semantics migration
   purposes like correlating a Node-ID between different protocols.  If
   there is more than one auxiliary Router-ID of value fields in IS-IS Extended IS Reachability sub-TLVs,
   defined a given type, then each
   one is encoded in [RFC5305] and [RFC5307].  Other 'Link Attribute' its own TLV.

3.3.1.5.  Opaque Node Attribute TLV

   The Opaque Node attribute TLV is an envelope that transparently
   carries optional node attribute TLVs are
   defined in advertised by a router.  An
   originating router shall use this document.  Although the encodings for 'Link
   Attribute' TLVs were originally defined TLV for IS-IS, encoding information
   specific to the TLVs can carry
   data sourced either by IS-IS protocol advertised in the NLRI header Protocol-ID
   field or OSPF.

   The following 'Link Attribute' TLVs are are valid new protocol extensions to the protocol as advertised in the LINK_STATE
   attribute:

   +------------+---------------------+--------------+-----------------+
   | TLV/SubTLV |
   NLRI header Protocol-ID field for which there is no protocol neutral
   representation in the BGP link-state NLRI.  A router for example
   could use this extension in order to advertise the native protocols
   node attribute TLVs, such as the OSPF Router Informational
   Capabilities TLV defined in [RFC4970], or the IGP TE Node Capability
   Descriptor TLV described in [RFC5073].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //               Opaque node attributes (variable)             //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 18: Opaque Node attribute format

3.3.2.  Link Attribute TLVs

   Link attribute TLVs are TLVs that may be encoded in the BGP-LS
   attribute with a link NLRI.  Each 'Link Attribute' is a Type/Length/
   Value (TLV) triplet formatted as defined in Section 3.1.  The format
   and semantics of the 'value' fields in some 'Link Attribute' TLVs
   correspond to the format and semantics of value fields in IS-IS
   Extended IS Reachability sub-TLVs, defined in [RFC5305] and
   [RFC5307].  Other 'Link Attribute' TLVs are defined in this document.
   Although the encodings for 'Link Attribute' TLVs were originally
   defined for IS-IS, the TLVs can carry data sourced either by IS-IS or
   OSPF.

   The following 'Link Attribute' TLVs are are valid in the LINK_STATE
   attribute:

   +------------+---------------------+--------------+-----------------+
   |  TLV Code  | Description         |     IS-IS    | Defined in:     |
   |    Point   |                     |  TLV/Sub-TLV |                 |
   +------------+---------------------+--------------+-----------------+
   |    256/3   | Area Identifier    1028    |      --- IPv4 Router-ID of   | Section 3.2.1.3    134/---   | [RFC5305]/4.3   |     269
   | Administrative            |     22/3 Local Node          | [RFC5305]/3.1              |                 |
   | group (color)    1029    | IPv6 Router-ID of   |    140/---   | [RFC6119]/4.1   |     270
   | Maximum link            |     22/9 Local Node          | [RFC5305]/3.3              |                 |
   | bandwidth    1030    | IPv4 Router-ID of   |    134/---   | [RFC5305]/4.3   |     271
   | Max. reservable            | Remote Node         |              |                 |
   |    1031    | IPv6 Router-ID of   |    140/---   | [RFC6119]/4.1   |
   |            | Remote Node         |              |                 |
   |    1088    | Administrative      |     22/3     | [RFC5305]/3.1   |
   |            | group (color)       |              |                 |
   |    1089    | Maximum link        |     22/9     | [RFC5305]/3.3   |
   |            | bandwidth           |              |                 |
   |    1090    | Max. reservable     |     22/10    | [RFC5305]/3.5   |
   |            | link bandwidth      |              |                 |
   |     272    1091    | Unreserved          |     22/11    | [RFC5305]/3.6   |
   |            | bandwidth           |              |                 |
   |     273    1092    | TE Default Metric   |     22/18    | [RFC5305]/3.7   |
   |     274    1093    | Link Protection     |     22/20    | [RFC5307]/1.2   |
   |            | Type                |              |                 |
   |     275    1094    | MPLS Protocol Mask  |      ---     | Section 3.3.1.1 3.3.2.2 |
   |     276    1095    | Metric              |      ---     | Section 3.3.1.2 3.3.2.3 |
   |     277    1096    | Shared Risk Link    |      ---     | Section 3.3.1.3 3.3.2.4 |
   |            | Group               |              |                 |
   |     278    1097    | OSPF specific Opaque link         |      ---     | Section 3.3.1.4 3.3.2.5 |
   |            | attribute           |              |                 |
   |     279    1098    | IS-IS Specific Link Name attribute |      ---     | Section 3.3.1.5 |
   |            | Attribute           |              | 3.3.2.6 |
   +------------+---------------------+--------------+-----------------+

                       Table 4: 7: Link Attribute TLVs

3.3.1.1.

3.3.2.1.  IPv4/IPv6 Router-ID

   The local/remote IPv4/IPv6 Router-ID TLVs are used to describe
   auxiliary Router-IDs that the IGP might be using, e.g., for TE
   purposes.  All auxiliary Router-IDs of both the local and the remote
   node MUST be included in the link attribute of each link NLRI.  If
   there are more than one auxiliary Router-ID of a given type, then
   multiple TLVs are used to encode them.

3.3.2.2.  MPLS Protocol Mask TLV

   The MPLS Protocol TLV (Type 275) carries a bit mask describing which MPLS
   signaling protocols are enabled.  The length of this TLV is 1.  The
   value is a bit array of 8 flags, where each bit represents an MPLS
   Protocol capability.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |L R
     |L|R|  Reserved |
     +-+-+-+-+-+-+-+-+

                       Figure 25: 19: MPLS Protocol TLV

   The following bits are defined:

     +-----+---------------------------------------------+-----------+

   +------------+------------------------------------------+-----------+
   |     Bit    | Description                              | Reference |
     +-----+---------------------------------------------+-----------+
   +------------+------------------------------------------+-----------+
   |  0     'L'    | Label Distribution Protocol (LDP)        | [RFC5036] |
   |  1     'R'    | Extension to RSVP for LSP Tunnels (RSVP-TE)        | [RFC3209] |
   | 2-7            | (RSVP-TE)                                |           |
   | 'Reserved' | Reserved for future use                  |           |
     +-----+---------------------------------------------+-----------+
   +------------+------------------------------------------+-----------+

                   Table 5: 8: MPLS Protocol Mask TLV Codes

3.3.1.2.

3.3.2.3.  Metric TLV

   The IGP Metric TLV (Type 276) carries the metric for this link.  The length of
   this TLV is 3.  If the length of variable, depending on the metric from which width of the
   IGP Metric value is derived is less than 3 (e.g. for underlying
   protocol.  IS-IS small metrics have a length of 1 octet (the two most
   significant bits are ignored).  OSPF link metrics or non-wide have a length of two
   octects.  IS-IS metric), then the upper bits wide-metrics have a length of the TLV are
   set to 0. three octets.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
     //      IGP Link Metric              | (variable length)      //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 26: 20: Metric TLV format

3.3.1.3.

3.3.2.4.  Shared Risk Link Group TLV

   The Shared Risk Link Group (SRLG) TLV (Type 277) carries the Shared Risk Link
   Group information (see Section 2.3, "Shared Risk Link Group
   Information", of [RFC4202]).  It contains a data structure consisting
   of a (variable) list of SRLG values, where each element in the list
   has 4 octets, as shown in Figure 27. 21.  The length of this TLV is 4 *
   (number of SRLG values).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Shared Risk Link Group Value                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
     //                         ............                         |                        //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Shared Risk Link Group Value                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 27: 21: Shared Risk Link Group TLV format

   Note that there is no SRLG TLV in OSPF-TE.  In IS-IS the SRLG
   information is carried in two different TLVs: the IPv4 (SRLG) TLV
   (Type 138) defined in [RFC5307], and the IPv6 SRLG TLV (Type 139)
   defined in [RFC6119].  Since the  In Link State NLRI uses variable
   Router-ID anchoring, both IPv4 and IPv6 SRLG
   information can be are carried in a single TLV.

3.3.1.4.  OSPF Specific

3.3.2.5.  Opaque Link Attribute TLV

   The OSPF specific Opaque link attribute TLV (Type 278) is an envelope that transparently
   carries optional link properties atrribute TLVs advertised by an
   OSPF a router.  The value field contains one or more optional OSPF link
   attribute TLVs.  An
   originating router shall use this TLV for encoding information
   specific to the OSPF protocol advertised in the NLRI header Protocol-ID
   field or new OSPF protocol extensions to the protocol as advertised in the
   NLRI header Protocol-ID field for which there is no protocol neutral
   representation in the BGP link-state NLRI.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |            OSPF specific
     //                Opaque link attributes (variable)           |
     |                                                               |            //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 28: OSPF specific 22: Opaque link attribute format

3.3.1.5.  IS-IS specific link attribute

3.3.2.6.  Link Name TLV

   The IS-IS specific link attribute Link Name TLV (Type 279) is an envelope that
   transparently carries optional link properties TLVs advertised by an
   IS-IS router. optional.  The value field contains one or more optional IS-IS
   link attribute TLVs.  An originating identifies the
   symbolic name of the router shall use this TLV link.  This symbolic name can be the FQDN
   for
   encoding information specific the link, it can be a subset of the FQDN, or it can be any string
   operators want to use for the IS-IS protocol link.  The use of FQDN or new IS-IS
   extensions a subset of
   it is strongly recommended.

   The Value field is encoded in 7-bit ASCII.  If a user-interface for which there
   configuring or displaying this field permits Unicode characters, that
   user-interface is no protocol neutral representation responsible for applying the ToASCII and/or
   ToUnicode algorithm as described in [RFC3490] to achieve the BGP link-state NLRI. correct
   format for transmission or display.

   How a router derives and injects link names is outside of the scope
   of this document.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |           IS-IS specific link attributes
     //                     Link Name (variable)           |
     |                                                               |                    //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 29: IS-IS specific link attribute 23: Link Name format

3.3.1.6.  IS-IS Area Address attribute TLV

   The area address is carried in

3.3.3.  Prefix Attribute TLVs

   Prefixes are learned from the Area Identifier SubTLV IGP topology (IS-IS or OSPF) with a set
   of IGP attributes (such as metric, route tags, etc.) that MUST be
   reflected into the
   Identifier TLV and consists of LINK_STATE attribute.  This section describes the Area Address which is assigned
   different attributes related to the link.  If more than one Area Addresses are present, only the
   lower address is encoded.  Note that the Area Identifier SubTLV may
   appear in all NLRI types (Link, Node and Prefix) and is defined in
   Section 3.2.1.3.

3.3.2.  Node Attribute TLVs

   The following node attribute TLVs IPv4/IPv6 prefixes.  Prefix
   Attributes TLVs SHOULD be used when advertising NLRI types 3 and 4
   only.  The following attributes TLVs are defined:

     +------------+--------------------------------------+----------+

   +---------------+----------------------+----------+-----------------+
   | TLV/SubTLV    TLV Code   | Description          |   Length |
     +------------+--------------------------------------+----------+ Reference       |    256/5
   | Multi Topology     Point     |        2                      |          |     280                 | Node Flag Bits
   +---------------+----------------------+----------+-----------------+
   |      1152     | IGP Flags            |        1 | Section 3.3.3.1 |
   |      1153     | Route Tag            |      4*n | Section 3.3.3.2 |
   |      1154     | Extended Tag         |      8*n | Section 3.3.3.3 |
   |      1155     | Prefix Metric        |        4 | Section 3.3.3.4 |
   |     281      1156     | OSPF Specific Node Properties Forwarding      | variable        4 | Section 3.3.3.5 |     282
   | IS-IS Specific Node Properties               | variable Address              |          |     256                 | IS-IS Area Address/Domain Identifier
   |      1157     | Opaque Prefix        | variable |
     +------------+--------------------------------------+----------+ Section 3.3.3.6 |
   |               | Attribute            |          |                 |
   +---------------+----------------------+----------+-----------------+

                      Table 6: Node 9: Prefix Attribute TLVs

3.3.2.1.  Node Multi Topology ID

   The Node Multi Topology ID is carried in the Multi Topolofy ID SubTLV
   (type 5) of Identifier ID

3.3.3.1.  IGP Flags TLV

   IGP Flags TLV (Type 256) and carries the Multi
   Topology ID contains IS-IS and topology specific OSPF flags for this node.  The format
   and semantics of the 'value' field in the Multi Topology TLV is
   defined in Section 3.2.1.5.  If the value in the Multi Topology TLV
   is derived from OSPF, then the upper 9 bits of the Multi Topology ID
   and the 'O' and 'A' bits are set originally
   assigned to 0.

3.3.2.2.  Node Flag Bits TLV the prefix.  The Node Flag Bits IGP Flags TLV (Type 280) carries a bit mask describing node
   attributes.  The value is a variable length bit array of flags, where
   each bit represents a node capability. encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |D|   Reserved  |                           Flags  (variable)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +-+-+-+-+-+-+-+-+

                      Figure 30: Node 24: IGP Flag Bits TLV format

   The value field contains bits are defined as follows:

                    +-----+--------------+-----------+ according to the table below:

            +----------+--------------------------+-----------+
            |    Bit   | Description              | Reference |
                    +-----+--------------+-----------+
            +----------+--------------------------+-----------+
            |  0    'D'   | Overload Bit | [RFC1195] |
                    |  1  | Attached Bit | [RFC1195] |
                    |  2  | External IS-IS Up/Down Bit        | [RFC2328] [RFC5305] |
            |  3 Reserved | ABR Bit Reserved for future use. | [RFC2328]           |
                    +-----+--------------+-----------+
            +----------+--------------------------+-----------+

                    Table 7: Node 10: IGP Flag Bits Definitions

3.3.2.3.  OSPF Specific Node Properties TLV

   The OSPF Specific Node Properties

3.3.3.2.  Route Tag

   Route Tag TLV (Type 281) is an envelope that
   transparently carries optional node properties TLVs advertised by an
   OSPF router.  The value field contains one or more optional OSPF node
   property TLVs, such as the OSPF Router Informational Capabilities TLV
   defined in [RFC4970], original IGP TAGs (IS-IS [RFC5130] or OSPF) of
   the OSPF TE Node Capability Descriptor TLV
   described in [RFC5073].  An originating router shall use this TLV for
   encoding information specific to the OSPF protocol or new OSPF
   extensions for which there prefix and is no protocol neutral representation in
   the BGP link-state NLRI. encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |            OSPF specific node properties (variable)           |
     |                                                               |
     //                    Route Tags (one or more)                 //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 31: OSPF specific Node property format

3.3.2.4.  IS-IS Specific Node Properties TLV

   The IS-IS Router Specific Node Properties 25: IGP Route TAG TLV (Type 282) format

   Length is an
   envelope that transparently carries optional node specific TLVs
   advertised by an IS-IS router. a multiple of 4.

   The value field contains one or more
   optional IS-IS node property TLVs, such Route Tags as the IS-IS TE Node
   Capability Descriptor TLV described learned in [RFC5073].  An originating
   router shall use this TLV for encoding information specific to the IGP
   topology.

3.3.3.3.  Extended Route Tag

   Extended Route Tag TLV carries IS-IS protocol or new IS-IS extensions for which there is no protocol
   neutral representation in Extended Route TAGs of the BGP link-state NLRI.

      0                   1                   2                   3
      0 1
   prefix [RFC5130] and is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |           IS-IS specific node properties (variable)           |
     |                                                               |
     //                Extended Route Tag (one or more)             //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 32: IS-IS specific Node property format

3.3.2.5.  ISIS Area Address 26: Extended IGP Route TAG TLV

   The area address format

   Length is carried in the Area Identifier SubTLV a multiple of 8.

   The 'Extended Route Tag' field contains one or more Extended Route
   Tags as learned in the
   Identifier IGP topology.

3.3.3.4.  Prefix Metric TLV and consists of the Area Address which is assigned to
   the node.  If more than one Area Addresses are present, only

   Prefix Metric TLV carries the
   lower address is encoded.  Note that metric of the Area Identifier SubTLV may
   appear in all NLRI types (Link, Node and Prefix) and is defined prefix as known in
   Section 3.2.1.3.

3.3.3.  Prefix Attributes TLVs

   Prefixes are learned from the
   IGP topology (ISIS or OSPF) with a set
   of IGP attributes (such as metric, route tags, etc.) that MUST be
   reflected into the LINK_STATE attribute.  This section describes the
   different attributes related to the IPv4/IPv6 prefixes.  Prefix
   Attributes TLVs SHOULD be used when advertising NLRI types 3 [RFC5305].  The attribute is mandatory and can only
   appear once.

      0                   1                   2                   3
      0 1 2 3 4
   only.  The following attributes TLVs are defined:

     +-------------------------+-------------+-----------+-----------+
     |        TLV/SubTLV       | Description |    Length | Reference |
     +-------------------------+-------------+-----------+-----------+
     |           283           | IGP Flags   | 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | 284       |
     |        Route Tag        | 4*n         | [RFC5130] | 285              Type             |             Length            |       Extended Tag      | 8*n         | [RFC5130] | 286
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Metric                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 27: Prefix Metric      | TLV Format

   Length is 4.

3.3.3.5.  OSPF Forwarding Address TLV

   OSPF Forwarding Address TLV [RFC2328] carries the OSPF forwarding
   address as known in the original OSPF advertisement.  Forwarding
   address can be either IPv4 or IPv6.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | [RFC5305] | 287              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                Forwarding Address (variable)                //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 28: OSPF Forwarding Address | TLV Format

   Length is 4           | [RFC2328] |           |
     +-------------------------+-------------+-----------+-----------+

                      Table 8: for an IPv4 forwarding address an 16 for an IPv6
   forwarding address.

3.3.3.6.  Opaque Prefix Attribute TLVs

3.3.3.1.  IGP Flags TLV

   IGP Flags

   The Opaque Prefix attribute TLV contains ISIS and OSPF flags and bits originally
   assigned is an envelope that transparently
   carries optional prefix attribute TLVs advertised by a router.  An
   originating router shall use this TLV for encoding information
   specific to the prefix. protocol advertised in the NLRI header Protocol-ID
   field or new protocol extensions to the protocol as advertised in the
   NLRI header Protocol-ID field for which there is no protocol neutral
   representation in the BGP link-state NLRI.

   The IGP Flags format of the TLV is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            IGP Flags
     //              Opaque Prefix Attributes  (variable)               |           //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 33: IGP Flag 29: Opaque Prefix Attribute TLV format

   where: Format

   Type is 283 as specified in Table 9 and Length is variable

   The following bits are defined according to the table here below:

                  +------+------------------+-----------+
                  |  Bit | Description      | Reference |
                  +------+------------------+-----------+
                  |   0  | ISIS Up/Down Bit | [RFC5305] |
                  |  1-3 | OSPF Route Type  | [RFC2328] |
                  | 4-15 | RESERVED         |           |
                  +------+------------------+-----------+
                    Table 9: IGP Flag Bits Definitions

   OSPF Route Type variable.

3.4.  BGP Next Hop Information

   BGP link-state information for both IPv4 and IPv6 networks can be either: Intra-Area (0x1), Inter-Area (0x2),
   External 1 (0x3), External 2 (0x4), NSSA (0x5) and
   carried over either an IPv4 BGP session, or an IPv6 BGP session.  If
   IPv4 BGP session is encoded used, then the next hop in a 3
   bits number.  For prefixes learned from IS-IS, this field MUST to the MP_REACH_NLRI
   SHOULD be an IPv4 address.  Similarly, if IPv6 BGP session is used,
   then the next hop in the MP_REACH_NLRI SHOULD be an IPv6 address.
   Usually the next hop will be set to 0x0 on transmission.

3.3.3.2.  Route Tag

   Route Tag TLV carries the original IGP TAG (ISIS or OSPF) local end-point address of
   the
   prefix and is BGP session.  The next hop address MUST be encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Route Tags (one or more)            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 34: IGP Route TAG TLV format

   where:

   Type is 284

   Length is a multiple of 4

   One or more Route Tags as learned described
   in [RFC4760].  The length field of the IGP topology.

3.3.3.3.  Extended Route Tag

   Extended Route Tag TLV carries next hop address will specify
   the ISIS Extended Route TAG of next hop address-family.  If the
   prefix and next hop length is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Extended Route Tag (one or more)         |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 35: Extended IGP Route TAG TLV format

   where:

   Type 4, then the
   next hop is 285

   Length an IPv4 address; if the next hop length is 16, then it is
   a multiple of 8

   Extended Route Tag contains global IPv6 address and if the next hop length is 32, then there is
   one or more Extended Route Tags global IPv6 address followed by a link-local IPv6 address.  The
   link-local IPv6 address should be used as
   learned described in the IGP topology.

3.3.3.4.  Prefix Metric TLV

   Prefix Metric TLV carries the metric of the prefix [RFC2545].
   For VPN SAFI, as known in per custom, an 8 byte route-distinguisher set to all
   zero is prepended to the
   IGP topology. next hop.

   The BGP Next Hop attribute is mandatory and can only appear once.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Metric                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 36: Prefix Metric TLV Format

   where:

   Type used by each BGP-LS speaker to validate
   the NLRI it receives.  However, this specification doesn't mandate
   any rule regarding the re-write of the BGP Next Hop attribute.

3.5.  Inter-AS Links

   The main source of TE information is 286

   Length the IGP, which is 4

3.3.3.5.  OSPF Forwarding Address TLV

   OSPF Forwarding Address TLV carries not active on
   inter-AS links.  In some cases, the OSPF forwarding address as
   known in IGP may have information of
   inter-AS links ([RFC5392], [RFC5316]).  In other cases, for injecting
   a non-IGP enabled link into the original OSPF advertisement.  Forwarding address can be BGP link-state RIB, an implementation
   MUST support configuration of either IPv4 'Static' or IPv6.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Forwarding Address (variable)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 'Direct' links.

3.6.  Router-ID Anchoring Example: ISO Pseudonode

   Encoding of a broadcast LAN in IS-IS provides a good example of how
   Router-IDs are encoded.  Consider Figure 37: OSPF Forwarding Address TLV Format

   where:

   Type is 287
   Length is 4 for 30.  This represents a
   Broadcast LAN between a pair of routers.  The "real" (=non
   pseudonode) routers have both an IPv4 forwarding address an 16 for Router-ID and IS-IS Node-ID.
   The pseudonode does not have an IPv6
   forwarding address

3.4.  BGP Next Hop Information

   BGP link-state information for both IPv4 Router-ID.  Node1 is the DIS for
   the LAN.  Two unidirectional links (Node1, Pseudonode 1) and IPv6 networks can be
   carried over either an
   (Pseudonode1, Node2) are being generated.

   The link NRLI of (Node1, Pseudonode1) is encoded as follows: the IGP
   Router-ID TLV of the local node descriptor is 6 octets long
   containing ISO-ID of Node1, 1920.0000.2001; the IGP Router-ID TLV of
   the remote node descriptor is 7 octets long containing the ISO-ID of
   Pseudonode1, 1920.0000.2001.02.  The BGP-LS attribute of this link
   contains one local IPv4 BGP session, or an IPv6 BGP session.  If Router-ID TLV (TLV type 1028) containing
   192.0.2.1, the IPv4 BGP session Router-ID of Node1.

   The link NRLI of (Pseudonode1.  Node2) is used, then encoded as follows: the next hop in IGP
   Router-ID TLV of the MP_REACH_NLRI
   SHOULD be an IPv4 address.  Similarly, if IPv6 BGP session local node descriptor is used,
   then 7 octets long
   containing the next hop in ISO-ID of Pseudonode1, 1920.0000.2001.02; the MP_REACH_NLRI SHOULD be an IPv6 address.
   Usually IGP
   Router-ID TLV of the next hop will be set to remote node descriptor is 6 octets long
   containing ISO-ID of Node2, 1920.0000.2002.  The BGP-LS attribute of
   this link contains one remote IPv4 Router-ID TLV (TLV type 1030)
   containing 192.0.2.2, the local end-point address IPv4 Router-ID of Node2.

     +-----------------+    +-----------------+    +-----------------+
     |      Node1      |    |   Pseudonode1   |    |      Node2      |
     |1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00|
     |     192.0.2.1   |    |                 |    |     192.0.2.2   |
     +-----------------+    +-----------------+    +-----------------+

                       Figure 30: IS-IS Pseudonodes

3.7.  Router-ID Anchoring Example: OSPFv2 to IS-IS Migration

   Graceful migration from one IGP to another requires coordinated
   operation of both protocols during the BGP session.  The next hop address MUST be encoded as described migration period.  Such a
   coordination requires identifying a given physical link in [RFC4760]. both IGPs.
   The length field IPv4 Router-ID provides that "glue" which is present in the node
   descriptors of the next hop address will specify OSPF link NLRI and in the next hop address-family.  If link attribute of the next hop length is 4,
   IS-IS link NLRI.

   Consider a point-to-point link between two routers, A and B, that
   initially were OSPFv2-only routers and then the
   next hop IS-IS is an enabled on them.
   Node A has IPv4 address; if the next hop length is 16, then it is
   a global Router-ID and ISO-ID; node B has IPv4 Router-ID, IPv6 address
   Router-ID and if the next hop length is 32, then there is ISO-ID.  Each protocol generates one global IPv6 address followed link NLRI for the
   link (A, B), both of which are carried by a link-local IPv6 address. BGP-LS.  The
   link-local IPv6 address should be used as described OSPFv2 link
   NLRI for the link is encoded with the IPv4 Router-ID of nodes A and B
   in [RFC2545]. the local and remote node descriptors, respectively.  The BGP Next Hop attribute IS-IS
   link NLRI for the link is used by each encoded with the ISO-ID of nodes A and B in
   the local and remote node descriptors, respectively.  In addition,
   the BGP-LS spaker to validate attribute of the IS-IS link NLRI it receives.  However, this specification doesn't mandate
   any rule regarding contains the re-write of the BGP Next Hop attribute.

3.5.  Inter-AS Links

   The main source TLV type
   1028 containing the IPv4 Router-ID of TE information is node A; TLV type 1030
   containing the IGP, which is not active on
   inter-AS links.  In order to inject a non-IGP enabled link into IPv4 Router-ID of node B and TLV type 1031 containing
   the
   BGP link-state RIB an implementation must support configuration IPv6 Router-ID of
   static links. node B. In this case, by using IPv4 Router-ID,
   the link (A, B) can be identified in both IS-IS and OSPF protocol.

4.  Link to Path Aggregation

   Distribution of all links available in the global Internet is
   certainly possible, however not desirable from a scaling and privacy
   point of view.  Therefore an implementation may support link to path
   aggregation.  Rather than advertising all specific links of a domain,
   an ASBR may advertise an "aggregate link" between a non-adjacent pair
   of nodes.  The "aggregate link" represents the aggregated set of link
   properties between a pair of non-adjacent nodes.  The actual methods
   to compute the path properties (of bandwidth, metric) are outside the
   scope of this document.  The decision whether to advertise all
   specific links or aggregated links is an operator's policy choice.
   To highlight the varying levels of exposure, the following deployment
   examples shall be are discussed.

4.1.  Example: No Link Aggregation

   Consider Figure 38. 31.  Both AS1 and AS2 operators want to protect their
   inter-AS {R1,R3}, {R2, R4} links using RSVP-FRR LSPs.  If R1 wants to
   compute its link-protection LSP to R3 it needs to "see" an alternate
   path to R3.  Therefore the AS2 operator exposes its topology.  All
   BGP TE enabled routers in AS1 "see" the full topology of AS and
   therefore can compute a backup path.  Note that the decision if the
   direct link between {R3, R4} or the {R4, R5, R3) path is used is made
   by the computing router.

          AS1   :   AS2
                :
           R1-------R3
            |   :   | \
            |   :   |  R5
            |   :   | /
           R2-------R4
                :
                :

                      Figure 38: no-link-aggregation 31: No link aggregation

4.2.  Example: ASBR to ASBR Path Aggregation

   The brief difference between the "no-link aggregation" example and
   this example is that no specific link gets exposed.  Consider
   Figure 39. 32.  The only link which gets advertised by AS2 is an
   "aggregate" link between R3 and R4.  This is enough to tell AS1 that
   there is a backup path.  However the actual links being used are
   hidden from the topology.

          AS1   :   AS2
                :
           R1-------R3
            |   :   |
            |   :   |
            |   :   |
           R2-------R4
                :
                :

                     Figure 39: asbr-link-aggregation 32: ASBR link aggregation

4.3.  Example: Multi-AS Path Aggregation

   Service providers in control of multiple ASes may even decide to not
   expose their internal inter-AS links.  Consider Figure 40. 33.  AS3 is
   modeled as a single node which connects to the border routers of the
   aggregated domain.

          AS1   :   AS2   :   AS3
                :         :
           R1-------R3-----
            |   :         : \
            |   :         :   vR0
            |   :         : /
           R2-------R4-----
                :         :
                :         :

                      Figure 40: multi-as-aggregation 33: Multi-AS aggregation

5.  IANA Considerations

   This document requests a code point from the registry of Address
   Family Numbers.  As per early allocation procedure this is AFI 16388.

   This document requests a code point from the registry of Subsequent
   Address Family Numbers.  As per early allocation procedure this is
   SAFI 71.

   This document requests a code point from the BGP Path Attributes
   registry.

   This document requests creation of a new registry for node anchor,
   link descriptor and link attribute TLVs.  Values 0-255 are reserved.
   Values 256-65535 will be used for Codepoints.  The registry will be
   initialized as shown in Table 2 and Table 4. 11.  Allocations within the registry
   will require documentation of the proposed use of the allocated value
   and approval by the Designated Expert assigned by the IESG (see
   [RFC5226]).

   Note to RFC Editor: this section may be removed on publication as an
   RFC.

6.  Manageability Considerations

   This section is structured as recommended in [RFC5706].

6.1.  Operational Considerations

6.1.1.  Operations

   Existing BGP operation operational procedures apply.  No new operation
   procedures are defined in this document.  It shall be is noted that the NLRI
   information present in this document purely carries application level
   data that have has no immediate corresponding forwarding state impact.  As
   such, any churn in reachability information has different impact than
   regular BGP update updates which needs need to change forwarding state for an
   entire router.  Furthermore it is anticipated that distribution of
   this NLRI will be handled by dedicated route-reflectors providing a
   level of isolation and fault-containment between different NLRI
   types.

6.1.2.  Installation and Initial Setup

   Configuration parameters defined in Section 6.2.3 SHOULD be
   initialized to the following default values:

   o  The Link-State NLRI capability is turned off for all neighbors.

   o  The maximum rate at which Link State NLRIs will be advertised/
      withdrawn from neighbors is set to 200 updates per second.

6.1.3.  Migration Path

   The proposed extension is only activated between BGP peers after
   capability negotiation.  Moreover, the extensions can be turned on/
   off an individual peer basis (see Section 6.2.3), so the extension
   can be gradually rolled out in the network.

6.1.4.  Requirements on Other Protocols and Functional Components

   The protocol extension defined in this document does not put new
   requirements on other protocols or functional components.

6.1.5.  Impact on Network Operation

   Frequency of Link-State NLRI updates could interfere with regular BGP
   prefix distribution.  A network operator MAY use a dedicated Route-
   Reflector infrastructure to distribute Link-State NLRIs.

   Distribution of Link-State NLRIs SHOULD be limited to a single admin
   domain, which can consist of multiple areas within an AS or multiple
   ASes.

6.1.6.  Verifying Correct Operation

   Existing BGP procedures apply.  In addition, an implementation SHOULD
   allow an operator to:

   o  List neighbors with whom the Speaker is exchanging Link-State
      NLRIs

6.2.  Management Considerations

6.2.1.  Management Information

6.2.2.  Fault Management

   TBD.

6.2.3.  Configuration Management

   An implementation SHOULD allow the operator to specify neighbors to
   which Link-State NLRIs will be advertised and from which Link-State
   NLRIs will be accepted.

   An implementation SHOULD allow the operator to specify the maximum
   rate at which Link State NLRIs will be advertised/withdrawn from
   neighbors

   An implementation SHOULD allow the operator to specify the maximum
   number of Link State NLRIs stored in router's RIB.

   An implementation SHOULD allow the operator to create abstracted
   topologies that are advertised to neighbors; Create different
   abstractions for different neighbors.

   An implementation SHOULD allow the operator to configure a 64-bit
   instance ID.

   An implementation SHOULD allow the operator to configure a pair of
   ASN and BGP BGP-LS identifier per flooding set the node participates in.

6.2.4.  Accounting Management

   Not Applicable.

6.2.5.  Performance Management

   An implementation SHOULD provide the following statistics:

   o  Total number of Link-State NLRI updates sent/received

   o  Number of Link-State NLRI updates sent/received, per neighbor

   o  Number of errored received Link-State NLRI updates, per neighbor

   o  Total number of locally originated Link-State NLRIs

6.2.6.  Security Management

   An operator SHOULD define ACLs to limit inbound updates as follows:

   o  Drop all updates from Consumer peers

7.  TLV/SubTLV  TLV/Sub-TLV Code Points Summary

   This section contains the global table of all TLVs/SubTLVs TLVs/Sub-TLVs defined
   in this document.

   +------------+--------------------+---------------+-----------------+

   +-----------+---------------------+---------------+-----------------+
   | TLV/SubTLV  TLV Code | Description         |   IS-IS TLV/  | Value defined   |
   |   Point   |                     |  TLV/Sub-TLV    Sub-TLV    | in:             |
   +------------+--------------------+---------------+-----------------+
   +-----------+---------------------+---------------+-----------------+
   |    256    | Identifier Local Node          |       --      ---      | Section 3.2.1 3.2.1.2 |
   |           | Descriptors         |               |                 |
   |    257    | Local Remote Node         |       --      ---      | Section 3.2.2.1 3.2.1.3 |
   |           | Descriptors         |               |                 |
   |    258    | Remote Node Link Local/Remote   |       --      22/4     | Section 3.2.2.2 [RFC5307]/1.1   |
   |           | Descriptors Identifiers         |               |                 |
   |    259    | IPv4 interface      |      22/6     | [RFC5305]/3.2   |
   |           | address             |               |                 |
   |    260    | IPv4 neighbor       |      22/8     | [RFC5305]/3.3   |
   |           | address             |               |                 |
   |    261    | IPv6 interface      |     22/12     | [RFC6119]/4.2   |
   |           | address             |               |                 |
   |    262    | IPv6 neighbor       |     22/13     | [RFC6119]/4.3   |
   |           | address             |               |                 |
   |    263    | Multi-Topology ID   |      ---      | Section 3.2.1.5 |
   |    264    | OSPF Route Type     |      ---      | Section 3.2.3   |
   |    265    | IP Reachability     |      ---      | Section 3.2.3   |
   |           | Information         |               |                 |
   |    512    | Autonomous System   |       --      ---      | Section 3.2.2.3 3.2.1.4 |
   |     260    513    | BGP BGP-LS Identifier   |       --      ---      | Section 3.2.2.3 3.2.1.4 |
   |     261    514    | ISO Node-ID Area ID             |       --      ---      | Section 3.2.2.3 3.2.1.4 |
   |     262    515    | IPv4 IGP Router-ID       |       --      ---      | Section 3.2.1.4 |
   |    1024   | Node Flag Bits      |      ---      | Section 3.2.2.3 3.3.1.1 |
   |     263    1025   | IPv6 Router-ID Opaque Node         |       --      ---      | Section 3.2.2.3 3.3.1.5 |
   |     264           | Link Local/Remote Properties          |      22/4               | [RFC5307]/1.1                 |
   |    1026   | Identifiers Node Name           |    variable   | Section 3.3.1.3 |
   |     265    1027   | IPv4 interface IS-IS Area          |      22/6    variable   | [RFC5305]/3.2 Section 3.3.1.2 |
   |           | address Identifier          |               |                 |
   |     266    1028   | IPv4 neighbor Router-ID of   |      22/8    134/---    | [RFC5305]/3.3 [RFC5305]/4.3   |
   |           | address Local Node          |               |                 |
   |     267    1029   | IPv6 interface Router-ID of   |     22/12    140/---    | [RFC6119]/4.2 [RFC6119]/4.1   |
   |           | address Local Node          |               |                 |
   |     268    1030   | IPv6 neighbor IPv4 Router-ID of   |     22/13    134/---    | [RFC6119]/4.3 [RFC5305]/4.3   |
   |           | address Remote Node         |               |                 |
   |    256/5    1031   | Multi Topology ID IPv6 Router-ID of   |       --    140/---    | Section 3.2.1.5 [RFC6119]/4.1   |
   |     269           | Remote Node         |               |                 |
   |    1088   | Administrative      |      22/3     | [RFC5305]/3.1   |
   |           | group (color)       |               |                 |
   |     270    1089   | Maximum link        |      22/9     | [RFC5305]/3.3   |
   |           | bandwidth           |               |                 |
   |     271    1090   | Max. reservable     |     22/10     | [RFC5305]/3.5   |
   |           | link bandwidth      |               |                 |
   |     272    1091   | Unreserved          |     22/11     | [RFC5305]/3.6   |
   |           | bandwidth           |               |                 |
   |     273    1092   | TE Default Metric   |     22/18     | [RFC5305]/3.7   |
   |     274    1093   | Link Protection     |     22/20     | [RFC5307]/1.2   |
   |           | Type                |               |                 |
   |     275    1094   | MPLS Protocol Mask  |       --      ---      | Section 3.3.1.1 3.3.2.2 |
   |     276    1095   | Metric              |       --      ---      | Section 3.3.1.2 3.3.2.3 |
   |     277    1096   | Shared Risk Link    |       --      ---      | Section 3.3.1.3 3.3.2.4 |
   |           | Group               |               |                 |
   |     278    1097   | OSPF specific Opaque link         |       --      ---      | Section 3.3.1.4 3.3.2.5 |
   |           | attribute           |               |                 |
   |     279    | IS-IS Specific     |       --      | Section 3.3.1.5 |
   |    1098   | Link Attribute     |               |                 |
   |     280    | Node Flag Bits     |       --      | Section 3.3.2.2 |
   |     281    | OSPF Specific Node |       --      | Section 3.3.2.3 |
   |            | Properties         |               |                 |
   |     282    | IS-IS Specific Name attribute |       --      ---      | Section 3.3.2.4 |
   |            | Node Properties    | 3.3.2.6 |
   |
   |     283    1152   | IGP Flags           |       --      ---      | Section 3.3.3.1 |
   |     284    1153   | Route Tag           |       --      ---      | [RFC5130]       |
   |     285    1154   | Extended Tag        |       --      ---      | [RFC5130]       |
   |     286    1155   | Prefix Metric       |       --      ---      | [RFC5305]       |
   |     287    1156   | OSPF Forwarding     |       --      ---      | [RFC2328]       |
   |           | Address             |               |                 |
   +------------+--------------------+---------------+-----------------+
   |    1157   | Opaque Prefix       |      ---      | Section 3.3.3.6 |
   |           | Attribute           |               |                 |
   +-----------+---------------------+---------------+-----------------+

             Table 10: 11: Summary Table of TLV/SubTLV TLV/Sub-TLV Codepoints

8.  Security Considerations

   Procedures and protocol extensions defined in this document do not
   affect the BGP security model.  See
   [I-D.ietf-karp-routing-tcp-analysis] for details.

   A BGP Speaker SHOULD NOT accept updates from a Consumer peer.

   An operator SHOULD employ a mechanism to protect a BGP Speaker
   against DDOS attacks from Consumers.

9.  Contributors

   We would like to thank Robert Varga for the significant contribution
   he gave to this document.

10.  Acknowledgements

   We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek
   Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les
   Ginsberg, Liem Nguyen, Manish Bhardwaj, Mike Shand, Peter Psenak, Rex
   Fernando, Richard Woundy, Steven Luong, Tamas Mondal, Waqas Alam,
   Vipin Kumar, Naiming Shen Shen, Balaji Rajagopalan and Yakov Rekhter for
   their comments.

11.  References

11.1.  Normative References

   [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
              dual environments", RFC 1195, December 1990.

   [RFC1918]  Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
              E. Lear, "Address Allocation for Private Internets",
              BCP 5, RFC 1918, February 1996.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

   [RFC2545]  Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
              Extensions for IPv6 Inter-Domain Routing", RFC 2545,
              March 1999.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, December 2001.

   [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,
              "Internationalizing Domain Names in Applications (IDNA)",
              RFC 3490, March 2003.

   [RFC4202]  Kompella, K. and Y. Rekhter, "Routing Extensions in
              Support of Generalized Multi-Protocol Label Switching
              (GMPLS)", RFC 4202, October 2005.

   [RFC4271]  Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
              Protocol 4 (BGP-4)", RFC 4271, January 2006.

   [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
              "Multiprotocol Extensions for BGP-4", RFC 4760,
              January 2007.

   [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
              Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
              RFC 4915, June 2007.

   [RFC5036]  Andersson, L., Minei, I., and B. Thomas, "LDP
              Specification", RFC 5036, October 2007.

   [RFC5120]  Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
              Topology (MT) Routing in Intermediate System to
              Intermediate Systems (IS-ISs)", RFC 5120, February 2008.

   [RFC5130]  Previdi, S., Shand, M., and C. Martin, "A Policy Control
              Mechanism in IS-IS Using Administrative Tags", RFC 5130,
              February 2008.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5301]  McPherson, D. and N. Shen, "Dynamic Hostname Exchange
              Mechanism for IS-IS", RFC 5301, October 2008.

   [RFC5305]  Li, T. and H. Smit, "IS-IS Extensions for Traffic
              Engineering", RFC 5305, October 2008.

   [RFC5307]  Kompella, K. and Y. Rekhter, "IS-IS Extensions in Support
              of Generalized Multi-Protocol Label Switching (GMPLS)",
              RFC 5307, October 2008.

   [RFC6119]  Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
              Engineering in IS-IS", RFC 6119, February 2011.

   [RFC6286]  Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP
              Identifier for BGP-4", RFC 6286, June 2011.

   [RFC6822]  Previdi, S., Ginsberg, L., Shand, M., Roy, A., and D.
              Ward, "IS-IS Multi-Instance", RFC 6822, December 2012.

11.2.  Informative References

   [I-D.ietf-alto-protocol]
              Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol",
              draft-ietf-alto-protocol-13 (work in progress),
              September 2012.

   [I-D.ietf-karp-routing-tcp-analysis]
              Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
              BGP, LDP, PCEP and MSDP Issues According to KARP Design
              Guide", draft-ietf-karp-routing-tcp-analysis-07 (work in
              progress), April 2013.

   [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
              Element (PCE)-Based Architecture", RFC 4655, August 2006.

   [RFC4970]  Lindem, A., Shen, N., Vasseur, JP., Aggarwal, R., and S.

              Shaffer, "Extensions to OSPF for Advertising Optional
              Router Capabilities", RFC 4970, July 2007.

   [RFC5073]  Vasseur, J. and J. Le Roux, "IGP Routing Protocol
              Extensions for Discovery of Traffic Engineering Node
              Capabilities", RFC 5073, December 2007.

   [RFC5152]  Vasseur, JP., Ayyangar, A., and R. Zhang, "A Per-Domain
              Path Computation Method for Establishing Inter-Domain
              Traffic Engineering (TE) Label Switched Paths (LSPs)",
              RFC 5152, February 2008.

   [RFC5316]  Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
              Support of Inter-Autonomous System (AS) MPLS and GMPLS
              Traffic Engineering", RFC 5316, December 2008.

   [RFC5392]  Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in
              Support of Inter-Autonomous System (AS) MPLS and GMPLS
              Traffic Engineering", RFC 5392, January 2009.

   [RFC5693]  Seedorf, J. and E. Burger, "Application-Layer Traffic
              Optimization (ALTO) Problem Statement", RFC 5693,
              October 2009.

   [RFC5706]  Harrington, D., "Guidelines for Considering Operations and
              Management of New Protocols and Protocol Extensions",
              RFC 5706, November 2009.

   [RFC6286]  Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP
              Identifier for BGP-4", RFC 6286, June 2011.

   [RFC6549]  Lindem, A., Roy, A., and S. Mirtorabi, "OSPFv2 Multi-
              Instance Extensions", RFC 6549, March 2012.

Authors' Addresses

   Hannes Gredler
   Juniper Networks, Inc.
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   US

   Email: hannes@juniper.net
   Jan Medved
   Cisco Systems, Inc.
   170, West Tasman Drive
   San Jose, CA  95134
   US

   Email: jmedved@cisco.com

   Stefano Previdi
   Cisco Systems, Inc.
   Via Del Serafico, 200
   Rome  00142
   Italy

   Email: sprevidi@cisco.com

   Adrian Farrel
   Juniper Networks, Inc.
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   US

   Email: afarrel@juniper.net

   Saikat Ray
   Cisco Systems, Inc.
   170, West Tasman Drive
   San Jose, CA  95134
   US

   Email: sairay@cisco.com