Alarm Management Information Base (MIB)

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2004).

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes management objects used for modelling and storing alarms.
Table of Contents

1. The Internet-Standard Management Framework 3
2. Introduction .. 3
3. Alarm Management Framework 4
 3.1. Terminology .. 4
 3.2. Alarm Management Architecture 5
 3.3. Features of this Architecture 5
 3.4. Security ... 8
 3.5. Relationship between Alarm and Notifications 9
 3.6. Notification Varbind Storage and Reference 9
 3.7. Relation to Notification Log MIB 10
 3.8. Relation to Event MIB .. 10
4. Generic Alarm MIB .. 10
 4.1. Overview .. 10
 4.2. Definitions ... 15
5. ITU Alarm ... 38
 5.1. Overview .. 38
 5.2. IANA Considerations .. 39
 5.3. Textual Conventions ... 47
 5.4. Definitions ... 49
6. Examples ... 59
 6.1. Alarms Based on linkUp/linkDown Notifications 59
 6.2. Temperature Alarm using generic Notifications 62
 6.3. Temperature Alarm without Notifications 63
 6.4. Printer MIB Alarm Example 65
 6.5. Rmon Alarm Example .. 66
 6.6. The Lifetime of an Alarm 67
7. Security Considerations ... 70
8. Acknowledgements ... 72
9. References ... 72
 9.1. Normative References ... 72
 9.2. Informative References 73
10. Authors’ Addresses .. 74
11. Full Copyright Statement .. 75
1. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

2. Introduction

In traditional SNMP management, problems are detected on an entity either through polling interesting MIB variables, waiting for the entity to send a Notification for a problem, or some combination of the two. This method is somewhat successful, but experience has shown some problems with this approach. Managers monitoring large numbers of entities cannot afford to be polling large numbers of objects on each device. Managers trying to ensure high reliability are unable to accurately determine whether any problems had occurred when they were not monitoring an entity. Finally, it can be time consuming for managers to try to understand the relationships between the various objects they poll, the Notifications they receive and the problems occurring on the entity. Even after detailed analysis they may still be left with an incomplete picture of what problems are occurring. But, it is important for an operator to be able to determine current problems on a system, so they can be fixed.

This memo describes a method of using alarm management in SNMP to address these problems. It also provides the necessary MIB objects to support this method.

Alarms and other terms related to alarm management are defined in the following sections.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].
3. Alarm Management Framework

3.1. Terminology

Error
 A deviation of a system from normal operation.

Fault
 Lasting error or warning condition.

Event
 Something that happens which may be of interest. A fault, a change in status, crossing a threshold, or an external input to the system, for example.

Notification
 Unsolicited transmission of management information.

Alarm
 Persistent indication of a fault.

Alarm State
 A condition or stage in the existence of an alarm. As a minimum, alarms states are raise and clear. They could also include severity information such as defined by perceived severity in the International Telecommunications Union (ITU) model [M.3100] - cleared, indeterminate, critical, major, minor and warning.

Alarm Raise
 The initial detection of the fault indicated by an alarm or any number of alarm states later entered, except clear.

Alarm Clear
 The detection that the fault indicated by an alarm no longer exists.

Active Alarm
 An alarm which has an alarm state that has been raised, but not cleared.

Alarm Detection Point
 The entity that detected the alarm.

Perceived Severity
 The severity of the alarm as determined by the alarm detection point using the information it has available.
3.2. Alarm Management Architecture

3.3. Features of this Architecture

3.3.1. Modular Alarm Architecture

The subject of alarm management can potentially cover a large number of topics including real-time alarms, historical alarms, alarm correlation, and alarm suppression, to name a few. Within each of these topics, there are a number of established models that could be
supported. This memo focuses on a subset of this problem space, but describes a modular SNMP alarm management framework. Alarms SHOULD be modelled so Notifications are sent on alarm Clear.

The framework defines a generic Alarm MIB that can be supported on its own, or with additional alarm modelling information such as the provided ITU Alarm MIB. In addition, the active alarm tables could also be extended to support additional information about active alarm instances. This framework can also be expanded in the future to support such features as alarm correlation and alarm suppression. This modular architecture means that the cost of supporting alarm management features is proportional to the number of features an implementation supports.

3.3.2. Flexible Alarm Modelling

Alarm models document an understanding between a manager and an agent as to what problems will be reported on a system, how these problems will be reported, and what might possibly happen over the lifetime of this problem.

The alarm modelling method provided in this memo provides flexibility to support implementations with different modelling requirements. All alarms are modelled as a series of states that are related together using an alarm ID. Alarm states can be modelled using traditional Notifications, generic alarm Notifications, or without the use of Notifications.

Alarm states modelled using traditional Notifications would specify a Notification Object Identifier, and optionally an (offset, value) pair of one of the Notification varbinds to identify the state. This alarm state would be entered when the entity generated a Notification that matched this information and the alarm would be added to the active alarm table. This Notification would also get sent on the wire to any destinations, as indicated in the SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [RFC3413].

Alarm states modelled using generic Notifications use the alarmActiveState or alarmClearState Notifications defined in this memo. These alarm states would be entered after being triggered by a stimulus outside the scope of this memo, the alarm would be added to the active alarm table and these generic Notifications would then be sent on the wire to any destinations, as indicated in the SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [RFC3413].
Alarm states modelled without any Notifications would be triggered by some stimulus outside the scope of this memo, the alarm would be added to the active alarm table, but no Notifications would be sent to interested managers.

3.3.3. Problem Indication

The Alarm MIB provides a means to determine whether a given notification is of interest to managers for purposes of alarm management by permitting inspection of the alarm models. If no entries in the alarmModelTable could match a particular notification, then that notification is not relevant to the alarm models defined. In addition, information in the alarm model, such as the Notification ID and the description tell exactly what error or warning condition this alarm is indicating. If the ITU-ALARM-MIB is also supported, additional information is provided via the probable cause.

3.3.5. Identifying Resource under Alarm

An important goal of alarm management is to ensure that any detected problems get fixed, so it is necessary to know exactly where this problem is occurring. In addition, it is necessary to be able to tell when alarm instances are raised against the same component, as well as to be able to tell what instance of an alarm is cleared by an instance of an alarm clear.

The Alarm MIB provides a generic method for identifying the resource by extracting and building a resource ID from the Notification varbinds. It records the relevant information needed to locate the source of the alarm.

3.3.6. Means of obtaining ITU alarm information

Alarm Information, as defined in ITU alarm models [M.3100], is optionally available to implementations through the optional support of the ITU-ALARM-MIB.

3.3.7. Configuration of Alarm Models

An alarm model can be added and removed during runtime. It can be modified assuming it is not being referenced by any active alarm instance.

3.3.8. Active Alarm Management

A list of currently active alarms and supporting statistics on the SNMP entity can be obtained.
This allows the network management station to find out about any problems that may have occurred before it started managing a particular network element, or while it was out of contact with it.

3.3.9. Distributed Alarm Management

All aspects of the Alarm MIB can be supported both on the device experiencing the alarms and on any mid-level managers that might be monitoring such devices.

3.3.10. Historical Alarm Management

Some systems may have a requirement that information on alarms that are no longer active is available. This memo provides a clear table to support this requirement.

This can also be achieved through the support of the Notification Log MIB [RFC3014] to store alarm state transitions.

3.4. Security

Given the nature of VACM, security for alarms is awkward since access control for the objects in the underlying Notifications can be checked only where the Notification is created. Thus such checking is possible only for locally generated Notifications, and even then only when security credentials are available.

For the purpose of this discussion, "security credentials" means the input values for the abstract service interface function isAccessAllowed [RFC3411] and using those credentials means conceptually using that function to see that those credentials allow access to the MIB objects in question, operating as for a Notification Originator in [RFC3413].

The Alarm MIB has the notion of a named alarm list. By using alarm list names and view-based access control [RFC3415] a network administrator can provide different access for different users. When an application creates an alarm model (indexed in part by the alarm list name) the security credentials of the creator remain associated with that alarm model and constrain what information is allowed to be placed in the active alarm table, the active alarm variable table, the cleared alarm table, and the ITU alarm table.

When processing locally-generated Notifications, the managed system MUST use the security credentials associated with each alarm model respectively, and MUST apply the same access control rules as described for a Notification Originator in [RFC3413].
The managed system SHOULD NOT apply access control when processing remotely-generated Notifications using the alarm models. In those cases the security of the information in the alarm tables SHOULD be left to the normal, overall access control for those tables.

3.5. Relationship between Alarm and Notifications

It is important to understand the relationship between alarms and Notifications, as both are traditional fault management methods. This relationship is modelled using the alarmModelTable to define the alarmModelNotificationId for each alarm state.

Not all Notifications signal an alarm state transition. Some Notifications are simply informational in nature, such as those that indicate that a configuration operation has been performed on an entity. These sorts of Notifications would not be represented in the Alarm MIB.

The Alarm MIB allows the use of the Notification space as defined in [RFC2578] in order to identify the Notifications that are related with the specific alarm state transitions. However there is no assumption that the respective Notifications must be sent for all or any of the alarm state transitions. It is also possible to model alarms using no Notifications at all. This architecture allows for both the efficient exploitation of the body of defined Notification and for the use of non-Notification based systems.

3.6. Notification Varbind Storage and Reference

In SNMPv1 [RFC1157], the varbinds in the Trap-PDU sent over the wire map one to one into those varbinds listed in the SMI of the trap in the MIB in which it was defined [RFC1215]. In the case of linkDown trap, the first varbind can unambiguously be identified as ifIndex. With the introduction of the InformRequest-PDU and SNMPv2-Trap-PDU types, which send sysUptime and snmpTrapOID as the first two varbinds, while the SMI in the MIB where the Notification is defined only lists additional varbinds, the meaning of "first varbind" becomes less clear. In the case of the linkDown Notification, referring to the first varbind could potentially be interpreted as either the sysUptime or ifIndex.

The varbind storage approach taken in the Alarm MIB is that sysUptime and snmpTrapOID SHALL always be stored in the active alarm variable table as entry 1 and 2 respectively, regardless of whether the transport was the Trap-PDU, the InformRequest-PDU or the SNMPv2 Trap-PDU. If the incoming Notification is an SNMPv1 Trap-PDU then an appropriate value for sysUpTime.0 or snmpTrapOID.0 shall be determined by using the rules in section 3.1 of [RFC3584].
The varbind reference approach taken in the Alarm MIB is that, for variables such as the alarmModelVarbindIndex, the first two obligatory varbinds of the InformRequest-PDU and SNMPv2-Trap-PDU need to be considered so the index values of the Trap-PDU and the SMI need be adjusted by two. In the case of linkDown, the third varbind would always be ifIndex.

3.7. Relation to Notification Log MIB

The Alarm MIB is intended to complement the Notification Log MIB [RFC3014], but can be used independently. The alarmActiveTable is defined in manner similar to that of the nlmLogTable. This format allows for the storage of any Trap or Notification type that can be defined using the SMI, or can be carried by SNMP. Using the same format as the Notification Log MIB also simplifies operations for systems choosing to implement both MIBs.

The object alarmActiveLogPointer points, for each entry in the alarmActiveLogTable, to the log index in the Notification Log MIB, if used.

If the Notification Log MIB is supported, it can be monitored by a management system as a hedge against lost alarms. The Notification Log can also be used to support historical alarm management.

3.8. Relationship with the Event MIB

During the work and discussions in the Working Group, the issue of the relationship between the MIB modules and the Event MIB [RFC2981] was raised. There is no direct relation or dependency between the Alarm MIB and the Event MIB. Some common terms (like ’event’) are being used in both MIB modules, and the user is directed to the sections that define terminology in the two documents for clarification.

4. Generic Alarm MIB

4.1. Overview

The ALARM-MIB consists of alarm models and lists of active and cleared alarms.

The alarmModelTable contains information that is applicable to all instances of an alarm. It can be populated at start-up with all alarms that could happen on a system or later configured by a management application. It contains all the alarms for a given system. If a Notification is not represented in the alarmModelTable, it is not an alarm state transition. The alarmModelTable provides a
means of defining the raise/clear and other state transition relationships between alarm states. The alarmModelIndex acts as a unique identifier for an alarm. An alarm model consists of definitions of the possible states an alarm can assume as well as the Object Identifier (OID) of the Notification associated with this alarm state. The object alarmModelState defines the states of an alarm.

The alarmActiveTable contains a list of alarms that are currently occurring on a system. It is intended that this table be queried upon device discovery and rediscovery to determine which alarms are currently active on the device.

The alarmActiveVariableTable contains the Notification variable bindings associated with the alarms in the alarmActiveTable.

The alarmActiveStatsTable contains current and total raised alarm counts as well as the time of the last alarm raise and alarm clears per named alarm list.

The alarmClearTable contains recently cleared alarms. It contains up to alarmClearMaximum cleared alarms.

The MIB also defines generic alarm Notifications that can be used when there is not an existing applicable Notification to signal the alarm state transition – alarmActiveState and alarmClearState.

4.1.1. Extensibility

The relationship between the Alarm MIB and the other alarm model MIB modules is expressed by the following: The alarmModelTable has a corresponding table in the specific MIB. For each row in the specific MIB alarm model table there is one row in the alarmModelTable. The alarmActiveTable has a corresponding table in the specific MIBs. For each row in the specific MIB active alarm table, there is one row in the alarmActiveTable. The alarmModelSpecificPointer object in the alarmModelTable points to the specific model entry in an extended alarm model table corresponding to this particular alarm. The alarmActiveSpecificPointer object in the alarmActiveTable points to the specific active alarm entry in an extended active alarm table corresponding to this particular alarm instance.

Additional extensions can be defined by defining an AUGMENTATION of either the Alarm or ITU Alarm tables. As the alarm model table only provides a mechanism to point at one specific alarm model, additional specific models SHOULD define another mechanism to map from the generic alarm model to the additional model.
4.1.2. Problem Indication

The problem that each alarm indicates is identified through the Object Identifier of the NotificationId of the state transition, and, optionally, the ITU parameters. alarmModelDescription provides a description of the alarm state suitable for displaying to an operator.

4.1.3. Alarm State Transition Notification

The SNMP-TARGET-MIB [RFC3413] provides the ability to specify which managers, if any, receive Notifications of problems. Solutions can therefore use the features of this MIB to change the Notification behaviour of their implementations. Specifying target hosts in this MIB along with specifying notifications in the alarmModelNotificationId would allow Notifications to be logged and sent out to management stations in an architecture as described in section 3.2. Specifying no target hosts in this MIB along with specifying notifications in the alarmModelNotificationId would allow Notifications to be logged but not sent out to management stations in an architecture as described in section 3.2. Regardless of what is defined in the SNMP-TARGET-MIB, specifying { 0 0 } in the alarmModelNotificationId would result in no notifications being logged or sent to management stations as a consequence of this particular alarm state transition.

Alarms are modelled by defining all possible states in the alarmModelTable, as well as defining alarmModelNotificationId, alarmModelVarbindIndex, and alarmModelVarbindValue for each of the possible alarm states. Optionally, ituAlarmPerceivedSeverity models the states in terms of ITU perceived severity.

4.1.4. Active Alarm Resource Identifier

Resources under alarm can be identified using the alarmActiveResourceId. This OBJECT IDENTIFIER points to an appropriate object to identify the given resource, depending on the type of the resource.

The consumer of the alarmActiveResourceId does not necessarily need to know the type of the resource in the resource ID, but if they want to know this, examining the content of the resource ID can derive it - 1.3.6.1.2.1.2.2.1.1.something is an interface, for example. It is therefore good practice to use resource IDs that can be consistently used across technologies, such as ifIndex, entPhysicalIndex or sysApplRunIndex, to minimize the number of resource prefixes a manager interested in a resource type needs to learn.
Resource ID can be calculated using the alarmModelResourcePrefix, alarmModelVarbindSubtree and the Notification varbinds. This allows for both the managed element to be able to compute and populate the alarmActiveResourceId object and for the manager to be able to determine when two separate alarm instances are referring to the same resource.

If alarmModelResourcePrefix has a value of 0.0, then alarmActiveResourceId is simply the variable identifier of the first Notification varbind that matches the prefix defined in alarmModelVarbindSubtree. Otherwise, alarmActiveResourceId is calculated by appending the instance information from the first Notification varbind that matches alarmModelVarbindSubtree to the prefix defined in alarmModelResourcePrefix. The instance information is the portion of the variable identifier following the part that matched alarmModelVarbindSubtree. If no match is found, then alarmActiveResourceId is simply the value of alarmModelResourcePrefix.

In addition to this, the variable bindings from the Notifications that signal the alarm state transitions are stored in the active alarm variable table. This allows for implementations familiar with the particular Notifications to implement other forms of resource identification.

For Example:

A) Consider an alarm modelled using the authenticationFailure [RFC3418] Notification.

authenticationFailure NOTIFICATION-TYPE
 STATUS current
 DESCRIPTION
 "An authenticationFailure trap signifies that the SNMPv2 entity, acting in an agent role, has received a protocol message that is not properly authenticated. While all implementations of the SNMPv2 must be capable of generating this trap, the snmpEnableAuthenTraps object indicates whether this trap will be generated."
 ::= { snmpTraps 5 }

To set the resource ID to be usmStats, 1.3.6.1.6.3.15.1.1, configure as follows:
 alarmModelVarbindSubtree = 0.0
 alarmModelResourcePrefix = usmStats (1.3.6.1.6.3.15.1.1)
B) Consider an alarm modelled using linkDown [RFC2863]

```
linkDown NOTIFICATION-TYPE
  OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
  STATUS current
  DESCRIPTION ""
  ::= { snmpTraps 3 }
```

To set the resource Id to be the ifIndex, configure as follows:
```
alarmModelVarbindSubtree = ifIndex (1.3.6.1.2.1.2.2.1.1)
alarmModelResourcePrefix = 0.0
```

Alternatively, since ifIndex is the first varbind, the following would also work, but might be less meaningful to a human reader of the MIB table:
```
alarmModelVarbindSubtree = 0.0
alarmModelResourcePrefix = 0.0
```

C) Consider an alarm modelled using the bgpBackwardTransition [RFC1657] Notification.

```
bgpBackwardTransition NOTIFICATION-TYPE
  OBJECTS { bgpPeerLastError, bgpPeerState }
  STATUS current
  DESCRIPTION "The BGPBackwardTransition Event is generated when the BGP FSM moves from a higher numbered state to a lower numbered state."
  ::= { bgpTraps 2 }
```

To set the resource Id to be the bgpPeerRemoteAddr, the index to the bgpTable, where bgpPeerState resides, configure as follows:
```
alarmModelVarbindSubtree = bgpPeerState (1.3.6.1.2.1.15.3.1.2)
alarmModelResourcePrefix = bgpPeerRemoteAddr (1.3.6.1.2.1.15.3.1.7)
```

4.1.5. Configurable Alarm Models

The alarm model table SHOULD be initially populated by the system. The objects in alarmModelTable and ituAlarmTable have a MAX-ACCESS of read-create, which allows managers to modify the alarm models to suit their requirements.
4.1.6. Active Alarm Management

Lists of alarms currently active on an SNMP entity are stored in the alarmActiveTable and, optionally, a model specific alarmTable, e.g., the ituAlarmActiveTable.

4.1.7. Distributed Alarm Management

Distributed alarm management can be achieved by support of the Alarm MIB on both the alarm detection point and on the mid-level manager. This is facilitated by the ability to be able to store different named alarm lists. A mid-level manager could create an alarmListName for each of the devices it manages and therefore store separate lists for each device. In addition, the context and IP addresses of the alarm detection point are stored in the alarmActiveTable.

4.2. Definitions

ALARM-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Integer32, Unsigned32, Gauge32,
 TimeTicks, Counter32, Counter64,
 IpAddress, Opaque, mib-2,
 zeroDotZero
 FROM SNMPv2-SMI -- [RFC2578]
 DateAndTime,
 RowStatus, RowPointer,
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC -- [RFC2579]
 SnmpAdminString
 FROM SNMP-FRAMWORK-MIB -- [RFC3411]
 InetAddressType, InetAddress
 FROM INET-ADDRESS-MIB -- [RFC3291]
 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- [RFC2580]
 ZeroBasedCounter32
 FROM RMON2-MIB; -- [RFC2021]

alarmMIB MODULE-IDENTITY
 LAST-UPDATED "200409090000Z" -- September 09, 2004
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "WG EMail: disman@ietf.org
 Subscribe: disman-request@ietf.org
 http://www.ietf.org/html.charters/disman-charter.html"
DESCRIPTION
"The MIB module describes a generic solution to model alarms and to store the current list of active alarms.

Copyright (C) The Internet Society (2004). The initial version of this MIB module was published in RFC 3877. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html"

REVISION "200409090000Z" -- September 09, 2004

DESCRIPTION
"Initial version, published as RFC 3877."
::= { mib-2 118 }

alarmObjects OBJECT IDENTIFIER ::= { alarmMIB 1 }
alarmNotifications OBJECT IDENTIFIER ::= { alarmMIB 0 }
alarmModel OBJECT IDENTIFIER ::= { alarmObjects 1 }
alarmActive OBJECT IDENTIFIER ::= { alarmObjects 2 }
alarmClear OBJECT IDENTIFIER ::= { alarmObjects 3 }

-- Textual Conventions

-- ResourceId is intended to be a general textual convention
-- that can be used outside of the set of MIBs related to
-- Alarm Management.
ResourceId ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "A unique identifier for this resource.

 The type of the resource can be determined by looking
 at the OID that describes the resource.

 Resources must be identified in a consistent manner.
 For example, if this resource is an interface, this
 object MUST point to an ifIndex and if this resource
 is a physical entity [RFC2737], then this MUST point
 to an entPhysicalDescr, given that entPhysicalIndex
 is not accessible. In general, the value is the
 name of the instance of the first accessible columnar
 object in the conceptual row of a table that is
 meaningful for this resource type, which SHOULD
 be defined in an IETF standard MIB."

SYNTAX OBJECT IDENTIFIER

-- LocalSnmpEngineOrZeroLenStr is intended to be a general
-- textual convention that can be used outside of the set of
-- MIBs related to Alarm Management.

LocalSnmpEngineOrZeroLenStr ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "An SNMP Engine ID or a zero-length string. The
 instantiation of this textual convention will provide
 guidance on when this will be an SNMP Engine ID and
 when it will be a zero length string"
SYNTAX OCTET STRING (SIZE(0 | 5..32))

-- Alarm Model

alarmModelLastChanged OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value of sysUpTime at the time of the last
 creation, deletion or modification of an entry in
 the alarmModelTable.

 If the number and content of entries has been unchanged
 since the last re-initialization of the local network
 management subsystem, then the value of this object
 MUST be zero."
::= { alarmModel 1 }

alarmModelTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlarmModelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A table of information about possible alarms on the system,
 and how they have been modelled."
::= { alarmModel 2 }

alarmModelEntry OBJECT-TYPE
SYNTAX AlarmModelEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Entries appear in this table for each possible alarm state.
 This table MUST be persistent across system reboots."
INDEX { alarmListName, alarmModelIndex, alarmModelState }
::= { alarmModelTable 1 }

AlarmModelEntry ::= SEQUENCE {
 alarmModelIndex Unsigned32,
 alarmModelState Unsigned32,
 alarmModelNotificationId OBJECT IDENTIFIER,
 alarmModelVarbindIndex Unsigned32,
 alarmModelVarbindValue Integer32,
 alarmModelDescription SnmpAdminString,
 alarmModelSpecificPointer RowPointer,
 alarmModelVarbindSubtree OBJECT IDENTIFIER,
 alarmModelResourcePrefix OBJECT IDENTIFIER,
 alarmModelRowStatus RowStatus
}

alarmModelIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An integer that acts as an alarm Id
 to uniquely identify each alarm
 within the named alarm list."
::= { alarmModelEntry 1 }

alarmModelState OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A value of 1 MUST indicate a clear alarm state. The value of this object MUST be less than the alarmModelState of more severe alarm states for this alarm. The value of this object MUST be more than the alarmModelState of less severe alarm states for this alarm."

::= { alarmModelEntry 2 }

alarmModelNotificationId OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The NOTIFICATION-TYPE object identifier of this alarm state transition. If there is no notification associated with this alarm state, the value of this object MUST be '0.0'."
DEFVAL { zeroDotZero }

::= { alarmModelEntry 3 }

alarmModelVarbindIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index into the varbind listing of the notification indicated by alarmModelNotificationId which helps signal that the given alarm has changed state. If there is no applicable varbind, the value of this object MUST be zero.

Note that the value of alarmModelVarbindIndex acknowledges the existence of the first two obligatory varbinds in the InformRequest-PDU and SNMPv2-Trap-PDU (sysUpTime.0 and snmpTrapOID.0). That is, a value of 2 refers to the snmpTrapOID.0.

If the incoming notification is instead an SNMPv1 Trap-PDU, then an appropriate value for sysUpTime.0 or snmpTrapOID.0 shall be determined by using the rules in section 3.1 of [RFC3584]."
DEFVAL { 0 }

::= { alarmModelEntry 4 }

alarmModelVarbindValue OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value that the varbind indicated by
alarmModelVarbindIndex takes to indicate
that the alarm has entered this state.

If alarmModelVarbindIndex has a value of 0, so
MUST alarmModelVarbindValue.
"
DEFVAL { 0 }
::= { alarmModelEntry 5 }

alarmModelDescription OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A brief description of this alarm and state suitable
to display to operators."
DEFVAL { "" }
::= { alarmModelEntry 6 }

alarmModelSpecificPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If no additional, model-specific Alarm MIB is supported by
the system the value of this object is ‘0.0’and attempts
to set it to any other value MUST be rejected appropriately.

When a model-specific Alarm MIB is supported, this object
MUST refer to the first accessible object in a corresponding
row of the model definition in one of these model-specific
MIB and attempts to set this object to { 0 0 } or any other
value MUST be rejected appropriately."
DEFVAL { zeroDotZero }
::= { alarmModelEntry 7 }

alarmModelVarbindSubtree OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The name portion of each VarBind in the notification,
in order, is compared to the value of this object.
If the name is equal to or a subtree of the value
of this object, for purposes of computing the value
of AlarmActiveResourceID the `prefix’ will be the matching portion, and the `indexes’ will be any remainder. The examination of varbinds ends with the first match. If the value of this object is 0.0, then the first varbind, or in the case of v2, the first varbind after the timestamp and the trap OID, will always be matched.

DEFVAL { zeroDotZero }
::= { alarmModelEntry 8 }

alarmModelResourcePrefix OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of AlarmActiveResourceId is computed by appending any indexes extracted in accordance with the description of alarmModelVarbindSubtree onto the value of this object. If this object’s value is 0.0, then the `prefix’ extracted is used instead.

DEFVAL { zeroDotZero }
::= { alarmModelEntry 9 }

alarmModelRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Control for creating and deleting entries. Entries may be modified while active. Alarms whose alarmModelRowStatus is not active will not appear in either the alarmActiveTable or the alarmClearTable. Setting this object to notInService cannot be used as an alarm suppression mechanism. Entries that are notInService will disappear as described in RFC2579.

This row can not be modified while it is being referenced by a value of alarmActiveModelPointer. In these cases, an error of `inconsistentValue’ will be returned to the manager.

This entry may be deleted while it is being referenced by a value of alarmActiveModelPointer. This results in the deletion of this entry and entries in the active alarms referencing this entry via an alarmActiveModelPointer.
As all read-create objects in this table have a DEFVAL clause, there is no requirement that any object be explicitly set before this row can become active. Note that a row consisting only of default values is not very meaningful.

::= { alarmModelEntry 10 }

-- Active Alarm Table --

alarmActiveLastChanged OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time of the last creation or deletion of an entry in the alarmActiveTable. If the number of entries has been unchanged since the last re-initialization of the local network management subsystem, then this object contains a zero value."
::= { alarmActive 1 }

alarmActiveOverflow OBJECT-TYPE
SYNTAX Counter32
UNITS "active alarms"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of active alarms that have not been put into the alarmActiveTable since system restart as a result of extreme resource constraints."
::= { alarmActive 5 }

alarmActiveTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlarmActiveEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of Active Alarms entries."
::= { alarmActive 2 }

alarmActiveEntry OBJECT-TYPE
SYNTAX AlarmActiveEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entries appear in this table when alarms are raised. They are removed when the alarm is cleared."

If under extreme resource constraint the system is unable to
add any more entries into this table, then the
alarmActiveOverflow statistic will be increased by one."
INDEX
 { alarmListName, alarmActiveDateAndTime, alarmActiveIndex }
::= { alarmActiveTable 1 }

AlarmActiveEntry ::= SEQUENCE {
 alarmListName SnmpAdminString,
 alarmActiveDateAndTime DateAndTime,
 alarmActiveIndex Unsigned32,
 alarmActiveEngineID LocalSnmpEngineOrZeroLenStr,
 alarmActiveEngineAddressType InetAddressType,
 alarmActiveEngineAddress InetAddress,
 alarmActiveContextName SnmpAdminString,
 alarmActiveVariables Unsigned32,
 alarmActiveNotificationID OBJECT IDENTIFIER,
 alarmActiveResourceId ResourceId,
 alarmActiveDescription SnmpAdminString,
 alarmActiveLogPointer RowPointer,
 alarmActiveModelPointer RowPointer,
 alarmActiveSpecificPointer RowPointer }

alarmListName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The name of the list of alarms. This SHOULD be the same as
nlmLogName if the Notification Log MIB [RFC3014] is supported.
This SHOULD be the same as, or contain as a prefix, the
applicable snmpNotifyFilterProfileName if the
SNMP-NOTIFICATION-MIB DEFINITIONS [RFC3413] is supported.

An implementation may allow multiple named alarm lists, up to
some implementation-specific limit (which may be none). A
zero-length list name is reserved for creation and deletion
by the managed system, and MUST be used as the default log
name by systems that do not support named alarm lists."
::= { alarmActiveEntry 1 }

alarmActiveDateAndTime OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The local date and time when the error occurred.

This object facilitates retrieving all instances of
alarms that have been raised or have changed state since a given point in time.

Implementations MUST include the offset from UTC, if available. Implementation in environments in which the UTC offset is not available is NOT RECOMMENDED.

```::= { alarmActiveEntry 2 }
```

`alarmActiveIndex` OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A strictly monotonically increasing integer which acts as the index of entries within the named alarm list. It wraps back to 1 after it reaches its maximum value."

```::= { alarmActiveEntry 3 }
```

`alarmActiveEngineID` OBJECT-TYPE

SYNTAX LocalSnmpEngineOrZeroLenStr
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The identification of the SNMP engine at which the alarm originated. If the alarm is from an SNMPv1 system this object is a zero length string."

```::= { alarmActiveEntry 4 }
```

`alarmActiveEngineAddressType` OBJECT-TYPE

SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates what type of address is stored in the alarmActiveEngineAddress object - IPv4, IPv6, DNS, etc."

```::= { alarmActiveEntry 5 }
```

`alarmActiveEngineAddress` OBJECT-TYPE

SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The address of the SNMP engine on which the alarm is occurring.

This object MUST always be instantiated, even if the list can contain alarms from only one engine."
::= { alarmActiveEntry 6 }

alarmActiveContextName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The name of the SNMP MIB context from which the alarm came.
For SNMPv1 alarms this is the community string from the Trap.
Note that care MUST be taken when selecting community
strings to ensure that these can be represented as a
well-formed SnmpAdminString. Community or Context names
that are not well-formed SnmpAdminStrings will be mapped
to zero length strings.

If the alarm’s source SNMP engine is known not to support
multiple contexts, this object is a zero length string."
::= { alarmActiveEntry 7 }

alarmActiveVariables OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of variables in alarmActiveVariableTable for this
alarm."
::= { alarmActiveEntry 8 }

alarmActiveNotificationID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The NOTIFICATION-TYPE object identifier of the alarm
state transition that is occurring."
::= { alarmActiveEntry 9 }

alarmActiveResourceId OBJECT-TYPE
SYNTAX ResourceId
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This object identifies the resource under alarm.

If there is no corresponding resource, then
the value of this object MUST be 0.0."
::= { alarmActiveEntry 10 }

Chisholm & Romascanu Standards Track [Page 25]
alarmActiveDescription OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object provides a textual description of the active alarm. This text is generated dynamically by the notification generator to provide useful information to the human operator. This information SHOULD provide information allowing the operator to locate the resource for which this alarm is being generated. This information is not intended for consumption by automated tools."
::= { alarmActiveEntry 11 }

alarmActiveLogPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to the corresponding row in a notification logging MIB where the state change notification for this active alarm is logged. If no log entry applies to this active alarm, then this object MUST have the value of 0.0"
::= { alarmActiveEntry 12 }

alarmActiveModelPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to the corresponding row in the alarmModelTable for this active alarm. This points not only to the alarm model being instantiated, but also to the specific alarm state that is active."
::= { alarmActiveEntry 13 }

alarmActiveSpecificPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If no additional, model-specific, Alarm MIB is supported by the system this object is '0.0'. When a model-specific Alarm MIB is supported, this object is the instance pointer to the specific model-specific active alarm list."
::= { alarmActiveEntry 14 }

-- Active Alarm Variable Table --

alarmActiveVariableTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlarmActiveVariableEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table of variables to go with active alarm entries."
::= { alarmActive 3 }

alarmActiveVariableEntry OBJECT-TYPE
SYNTAX AlarmActiveVariableEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Entries appear in this table when there are variables in the varbind list of a corresponding alarm in alarmActiveTable. Entries appear in this table as though the trap/notification had been transported using a SNMPv2-Trap-PDU, as defined in [RFC3416] - i.e., the alarmActiveVariableIndex 1 will always be sysUpTime and alarmActiveVariableIndex 2 will always be snmpTrapOID."

If the incoming notification is instead an SNMPv1 Trap-PDU and the value of alarmModelVarbindIndex is 1 or 2, an appropriate value for sysUpTime.0 or snmpTrapOID.0 shall be determined by using the rules in section 3.1 of [RFC3584]."
INDEX { alarmListName, alarmActiveIndex, alarmActiveVariableIndex }
::= { alarmActiveVariableTable 1 }

AlarmActiveVariableEntry ::= SEQUENCE {
 alarmActiveVariableIndex Unsigned32,
 alarmActiveVariableID OBJECT IDENTIFIER,
 alarmActiveVariableValueType INTEGER,
 alarmActiveVariableCounter32Val Counter32,
 alarmActiveVariableUnsigned32Val Unsigned32,
 alarmActiveVariableTimeTicksVal TimeTicks,
 alarmActiveVariableInteger32Val Integer32,
 alarmActiveVariableOctetStringVal OCTET STRING,
 alarmActiveVariableIpAddressVal IpAddress,
 alarmActiveVariableOidVal OBJECT IDENTIFIER,
 alarmActiveVariableCounter64Val Counter64,
}
alarmActiveVariableOpaqueVal Opaque }

alarmActiveVariableIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A strictly monotonically increasing integer, starting at
 1 for a given alarmActiveIndex, for indexing variables
 within the active alarm variable list."
::= { alarmActiveVariableEntry 1 }

alarmActiveVariableID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The alarm variable’s object identifier."
::= { alarmActiveVariableEntry 2 }

alarmActiveVariableValueType OBJECT-TYPE
SYNTAX INTEGER {
 counter32(1),
 unsigned32(2),
 timeTicks(3),
 integer32(4),
 ipAddress(5),
 octetString(6),
 objectId(7),
 counter64(8),
 opaque(9)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The type of the value. One and only one of the value
 objects that follow is used for a given row in this table,
 based on this type."
::= { alarmActiveVariableEntry 3 }

alarmActiveVariableCounter32Val OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘counter32’."
::= { alarmActiveVariableEntry 4 }
alarmActiveVariableUnsigned32Val OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘unsigned32’."
 ::= { alarmActiveVariableEntry 5 }

alarmActiveVariableTimeTicksVal OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘timeTicks’."
 ::= { alarmActiveVariableEntry 6 }

alarmActiveVariableInteger32Val OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘integer32’."
 ::= { alarmActiveVariableEntry 7 }

alarmActiveVariableOctetStringVal OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..65535))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘octetString’."
 ::= { alarmActiveVariableEntry 8 }

alarmActiveVariableIpAddressVal OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘ipAddress’."
 ::= { alarmActiveVariableEntry 9 }

alarmActiveVariableOidVal OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The value when alarmActiveVariableType is ‘objectId’."
 ::= { alarmActiveVariableEntry 10 }
alarmActiveVariableCounter64Val OBJECT-TYPE
 SYNTAX Counter64
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value when alarmActiveVariableType is 'counter64'."
 ::= { alarmActiveVariableEntry 11 }

alarmActiveVariableOpaqueVal OBJECT-TYPE
 SYNTAX Opaque (SIZE(0..65535))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value when alarmActiveVariableType is 'opaque'.
 Note that although RFC2578 [RFC2578] forbids the use
 of Opaque in 'standard' MIB modules, this particular
 usage is driven by the need to be able to accurately
 represent any well-formed notification, and justified
 by the need for backward compatibility."
 ::= { alarmActiveVariableEntry 12 }

-- Statistics --

alarmActiveStatsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AlarmActiveStatsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table represents the alarm statistics
 information."
 ::= { alarmActive 4 }

alarmActiveStatsEntry OBJECT-TYPE
 SYNTAX AlarmActiveStatsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Statistics on the current active alarms."
 INDEX { alarmListName }
 ::= { alarmActiveStatsTable 1 }

AlarmActiveStatsEntry ::= SEQUENCE {
 alarmActiveStatsActiveCurrent Gauge32,
 alarmActiveStatsActives ZeroBasedCounter32,
 alarmActiveStatsLastRaise TimeTicks,
alarmActiveStatsActiveCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of currently active alarms on the system."
::= { alarmActiveStatsEntry 1 }

alarmActiveStatsActives OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of active alarms since system restarted."
::= { alarmActiveStatsEntry 2 }

alarmActiveStatsLastRaise OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time of the last
alarm raise for this alarm list.
If no alarm raises have occurred since the
last re-initialization of the local network management
subsystem, then this object contains a zero value."
::= { alarmActiveStatsEntry 3 }

alarmActiveStatsLastClear OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time of the last
alarm clear for this alarm list.
If no alarm clears have occurred since the
last re-initialization of the local network management
subsystem, then this object contains a zero value."
::= { alarmActiveStatsEntry 4 }

-- Alarm Clear

alarmClearMaximum OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-write
 STATUS current
DESCRIPTION
"This object specifies the maximum number of cleared
alarms to store in the alarmClearTable. When this
number is reached, the cleared alarms with the
earliest clear time will be removed from the table."
::= { alarmClear 1 }

alarmClearTable OBJECT-TYPE
SYNTAX SEQUENCE OF AlarmClearEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains information on
cleared alarms."
::= { alarmClearTable 1 }

alarmClearEntry OBJECT-TYPE
SYNTAX AlarmClearEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information on a cleared alarm."
INDEX { alarmListName, alarmClearDateAndTime,
alarmClearIndex }
::= { alarmClearTable 1 }

AlarmClearEntry ::==
SEQUENCE {
 alarmClearIndex Unsigned32,
 alarmClearDateAndTime DateAndTime,
 alarmClearEngineID LocalSnmpEngineOrZeroLenStr,
 alarmClearEngineAddressType InetAddressType,
 alarmClearEngineAddress InetAddress,
 alarmClearContextName SnmpAdminString,
 alarmClearNotificationID OBJECT IDENTIFIER,
 alarmClearResourceId ResourceId,
 alarmClearLogIndex Unsigned32,
 alarmClearModelPointer RowPointer
}

alarmClearIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An integer which acts as the index of entries within
the named alarm list. It wraps back to 1 after it reaches its maximum value.

This object has the same value as the alarmActiveIndex that this alarm instance had when it was active.

::= { alarmClearEntry 1 }

alarmClearDateAndTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The local date and time when the alarm cleared.

This object facilitates retrieving all instances of alarms that have been cleared since a given point in time.

Implementations MUST include the offset from UTC, if available. Implementation in environments in which the UTC offset is not available is NOT RECOMMENDED."

::= { alarmClearEntry 2 }

alarmClearEngineID OBJECT-TYPE
SYNTAX LocalSnmpEngineOrZeroLenStr
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The identification of the SNMP engine at which the alarm originated. If the alarm is from an SNMPv1 system this object is a zero length string."

::= { alarmClearEntry 3 }

alarmClearEngineAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates what type of address is stored in the alarmActiveEngineAddress object - IPv4, IPv6, DNS, etc."

::= { alarmClearEntry 4 }

alarmClearEngineAddress OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The Address of the SNMP engine on which the alarm was occurring. This is used to identify the source of an SNMPv1
This object MUST always be instantiated, even if the list can contain alarms from only one engine.

::= { alarmClearEntry 5 }

alarmClearContextName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The name of the SNMP MIB context from which the alarm came. For SNMPv1 traps this is the community string from the Trap. Note that care needs to be taken when selecting community strings to ensure that these can be represented as a well-formed SnmpAdminString. Community or Context names that are not well-formed SnmpAdminStrings will be mapped to zero length strings.

If the alarm’s source SNMP engine is known not to support multiple contexts, this object is a zero length string."

::= { alarmClearEntry 6 }

alarmClearNotificationID OBJECT-TYPE
SYNTAX Object IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The NOTIFICATION-TYPE object identifier of the alarm clear."

::= { alarmClearEntry 7 }

alarmClearResourceId OBJECT-TYPE
SYNTAX ResourceId
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object identifies the resource that was under alarm.

If there is no corresponding resource, then the value of this object MUST be 0.0."

::= { alarmClearEntry 8 }

alarmClearLogIndex OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This number MUST be the same as the log index of the applicable row in the notification log MIB, if it exists. If no log index applies to the trap, then this object MUST have the value of 0."
 ::= { alarmClearEntry 9 }

alarmClearModelPointer OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A pointer to the corresponding row in the alarmModelTable for this cleared alarm."
 ::= { alarmClearEntry 10 }

-- Notifications

alarmActiveState NOTIFICATION-TYPE
OBJECTS { alarmActiveModelPointer, alarmActiveResourceId }
STATUS current
DESCRIPTION
"An instance of the alarm indicated by alarmActiveModelPointer has been raised against the entity indicated by alarmActiveResourceId.

The agent must throttle the generation of consecutive alarmActiveState traps so that there is at least a two-second gap between traps of this type against the same alarmActiveModelPointer and alarmActiveResourceId. When traps are throttled, they are dropped, not queued for sending at a future time.

A management application should periodically check the value of alarmActiveLastChanged to detect any missed alarmActiveState notification-events, e.g., due to throttling or transmission loss."
 ::= { alarmNotifications 2 }

alarmClearState NOTIFICATION-TYPE
OBJECTS { alarmActiveModelPointer, alarmActiveResourceId }
STATUS current
DESCRIPTION
"An instance of the alarm indicated by alarmActiveModelPointer has been cleared against
the entity indicated by alarmActiveResourceId.

The agent must throttle the generation of consecutive alarmActiveClear traps so that there is at least a two-second gap between traps of this type against the same alarmActiveModelPointer and alarmActiveResourceId. When traps are throttled, they are dropped, not queued for sending at a future time.

A management application should periodically check the value of alarmActiveLastChanged to detect any missed alarmClearState notification-events, e.g., due to throttling or transmission loss.

::= { alarmNotifications 3 }

-- Conformance

alarmConformance OBJECT IDENTIFIER ::= { alarmMIB 2 }

alarmCompliances OBJECT IDENTIFIER ::= { alarmConformance 1 }

alarmCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for systems supporting the Alarm MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 alarmActiveGroup,
 alarmModelGroup
 }
 GROUP alarmActiveStatsGroup
 DESCRIPTION "This group is optional."
 GROUP alarmClearGroup
 DESCRIPTION "This group is optional."
 GROUP alarmNotificationsGroup
 DESCRIPTION "This group is optional."
 ::= { alarmCompliances 1 }

alarmGroups OBJECT IDENTIFIER ::= { alarmConformance 2 }

alarmModelGroup OBJECT-GROUP
 OBJECTS {
 alarmModelLastChanged,
 alarmModelNotificationId,
alarmModelVarbindIndex,
alarmModelVarbindValue,
alarmModelDescription,
alarmModelSpecificPointer,
alarmModelVarbindSubtree,
alarmModelResourcePrefix,
alarmModelRowStatus
}

STATUS current
DESCRIPTION
"Alarm model group."
 ::= { alarmGroups 1}

alarmActiveGroup OBJECT-GROUP
OBJECTS {
 alarmActiveLastChanged,
 alarmActiveOverflow,
 alarmActiveEngineID,
 alarmActiveEngineAddressType,
 alarmActiveEngineAddress,
 alarmActiveContextName,
 alarmActiveVariables,
 alarmActiveNotificationID,
 alarmActiveResourceId,
 alarmActiveDescription,
 alarmActiveLogPointer,
 alarmActiveModelPointer,
 alarmActiveSpecificPointer,
 alarmActiveVariableID,
 alarmActiveVariableValueType,
 alarmActiveVariableCounter32Val,
 alarmActiveVariableUnsigned32Val,
 alarmActiveVariableTimeTicksVal,
 alarmActiveVariableInteger32Val,
 alarmActiveVariableOctetStringVal,
 alarmActiveVariableIpAddressVal,
 alarmActiveVariableOidVal,
 alarmActiveVariableCounter64Val,
 alarmActiveVariableOpaqueVal
}

STATUS current
DESCRIPTION
"Active Alarm list group."
 ::= { alarmGroups 2}

alarmActiveStatsGroup OBJECT-GROUP
OBJECTS {
 alarmActiveStatsActives,
This MIB module defines alarm information specific to the alarm model defined in ITU M.3100 [M.3100], X.733 [X.733], and X.736 [X.736]. This MIB module follows the modular architecture defined by the Alarm MIB, in which the generic Alarm MIB can be augmented by other alarm information defined according to more specific models that define additional behaviour and characteristics.
The ituAlarmTable contains information from the ITU Alarm Model about possible alarms in the system.

The ituAlarmActiveTable contains information from the ITU Alarm Model about alarms modelled using the ituAlarmTable that are currently occurring on the system.

The ituAlarmActiveStatsTable provides statistics on current and total alarms.

5.2. IANA Considerations

Over time, there will be a need to add new IANAITUEventType and IANAITuProbableCause enumerated values. The Internet Assigned Number Authority (IANA) is responsible for the assignment of the enumerations in these TCs.

IANAITuProbableCause value of 0 is reserved for special purposes and MUST NOT be assigned. Values of IANAITuProbableCause in the range 1 to 1023 are reserved for causes that correspond to ITU-T probable cause. All other requests for new causes will be handled on a first-come basis, with 1025.

Request should come in the form of well-formed SMI [RFC2578] for enumeration names that are unique and sufficiently descriptive.

While some effort will be taken to ensure that new enumerations do not conceptually duplicate existing enumerations it is acknowledged that the existence of conceptual duplicates in the starting probable cause list is an known industry reality.

To aid IANA in the administration of probable cause names and values, the OPS Area Director will appoint one or more experts to help review requests.

See http://www.iana.org

The following shall be used as the initial values, but the latest values for these textual conventions should be obtained from IANA:

IANA-ITU-ALARM-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI -- [RFC2578]
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]
ianaItuAlarmNumbers MODULE-IDENTITY
LAST-UPDATED "200409090000Z" -- September 09, 2004
ORGANIZATION "IANA"
CONTACT-INFO
 "Postal: Internet Assigned Numbers Authority
 Internet Corporation for Assigned Names
 and Numbers
 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292-6601
 USA
 Tel: +1 310-823-9358
 E-Mail: iana@iana.org"
DESCRIPTION
 "The MIB module defines the ITU Alarm
 textual convention for objects expected to require
 regular extension.

 Copyright (C) The Internet Society (2004). The
 initial version of this MIB module was published
 in RFC 3877. For full legal notices see the RFC
 itself. Supplementary information may be available on:
 http://www.ietf.org/copyrights/IANAmib.html"
REVISION "200409090000Z" -- September 09, 2004
DESCRIPTION
 "Initial version, published as RFC 3877."
 ::= { mib-2 119 }
IANAItuProbableCause ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "ITU-T probable cause values. Duplicate values defined in
 X.733 are appended with X733 to ensure syntactic uniqueness.
 Probable cause value 0 is reserved for special purposes.

 The Internet Assigned Number Authority (IANA) is responsible
 for the assignment of the enumerations in this TC.
 IANAItuProbableCause value of 0 is reserved for special
 purposes and MUST NOT be assigned.

 Values of IANAItuProbableCause in the range 1 to 1023 are
 reserved for causes that correspond to ITU-T probable cause.

 All other requests for new causes will be handled on a
 first-come, first served basis and will be assigned
 enumeration values starting with 1025.

 Request should come in the form of well-formed
SMI [RFC2578] for enumeration names that are unique and sufficiently descriptive.

While some effort will be taken to ensure that new probable causes do not conceptually duplicate existing probable causes it is acknowledged that the existence of conceptual duplicates in the starting probable cause list is an known industry reality.

To aid IANA in the administration of probable cause names and values, the OPS Area Director will appoint one or more experts to help review requests.

See http://www.iana.org"

REFERENCE
"ITU Recommendation M.3100, 'Generic Network Information Model', 1995

SYNTAX

 INTEGER

{-- The following probable causes were defined in M.3100
aIS (1),
callsetUpFailure (2),
degradedSignal (3),
farEndReceiverFailure (4),
framingError (5),
lossOfFrame (6),
lossOfPointer (7),
lossOfSignal (8),
payloadTypeMismatch (9),
transmissionError (10),
remoteAlarmInterface (11),
excessiveBER (12),
pathTraceMismatch (13),
unavailable (14),
signalLabelMismatch (15),
lossOfMultiFrame (16),
receiveFailure (17),
transmitFailure (18),
modulationFailure (19),
demodulationFailure (20),
broadcastChannelFailure (21),
connectionEstablishmentError (22),
invalidMessageReceived (23),
localNodeTransmissionError (24),
remoteNodeTransmissionError (25),
routingFailure (26),

--Values 27-50 are reserved for communications alarm related
--probable causes
-- The following are used with equipment alarm.

backplaneFailure (51),
dataSetProblem (52),
equipmentIdentifierDuplication (53),
externalIFDeviceProblem (54),
lineCardProblem (55),
multiplexerProblem (56),
neIdentifierDuplication (57),
powerProblem (58),
processorProblem (59),
protectionPathFailure (60),
receiverFailure (61),
replaceableUnitMissing (62),
replaceableUnitTypeMismatch (63),
synchronizationSourceMismatch (64),
terminalProblem (65),
timingProblem (66),
transmitterFailure (67),
trunkCardProblem (68),
replaceableUnitProblem (69),
realTimeClockFailure (70),

--An equipment alarm to be issued if the system detects that the
--real time clock has failed
antennaFailure (71),
batteryChargingFailure (72),
diskFailure (73),
frequencyHoppingFailure (74),
ioDeviceError (75),
lossOfSynchronisation (76),
lossOfRedundancy (77),
powerSupplyFailure (78),
signalQualityEvaluationFailure (79),
receiverFailure (80),
protectionMechanismFailure (81),
protectingResourceFailure (82),

-- Values 83-100 are reserved for equipment alarm related probable
-- causes
-- The following are used with environmental alarm.
airCompressorFailure (101),
airConditioningFailure (102), airDryerFailure (103), batteryDischarging (104), batteryFailure (105), commercialPowerFailure (106), coolingFanFailure (107), engineFailure (108), fireDetectorFailure (109), fuseFailure (110), generatorFailure (111), lowBatteryThreshold (112), pumpFailure (113), rectifierFailure (114), rectifierHighVoltage (115), rectifierLowFVoltage (116), ventilationsSystemFailure (117), enclosureDoorOpen (118), explosiveGas (119), fire (120), flood (121), highHumidity (122), highTemperature (123), highWind (124), iceBuildUp (125), intrusionDetection (126), lowFuel (127), lowHumidity (128), lowCablePressure (129), lowTemperature (130), lowWater (131), smoke (132), toxicGas (133), coolingSystemFailure (134), externalEquipmentFailure (135), externalPointFailure (136),

-- Values 137-150 are reserved for environmental alarm related probable causes
-- The following are used with Processing error alarm.
storageCapacityProblem (151), memoryMismatch (152), corruptData (153), outOfCPUCycles (154), sfwrEnvironmentProblem (155), sfwrDownloadFailure (156), lossOfRealTime (157),

-- A processing error alarm to be issued after the system has been reinitialised. This will indicate -- to the management systems that the view they have of the managed
--system may no longer be valid. Usage example: The managed system issues this alarm after a reinitialization with severity warning to inform the management system about the event. No clearing notification will be sent.

applicationSubsystemFailure (158),
configurationOrCustomisationError (159),
databaseInconsistency (160),
fileError (161),
outOfMemory (162),
softwareError (163),
timeoutExpired (164),
derelayingResourceUnavailable (165),
versionMismatch (166),

--Values 168-200 are reserved for processing error alarm related probable causes.

bandwidthReduced (201),
congestion (202),
excessiveErrorRate (203),
excessiveResponseTime (204),
excessiveRetransmissionRate (205),
reducedLoggingCapability (206),
systemResourcesOverload (207),
-- The following were defined X.733
adapterError (500),
applicationSubsystemFailure (501),
bandwidthReducedX733 (502),
callEstablishmentError (503),
communicationsProtocolError (504),
communicationsSubsystemFailure (505),
configurationOrCustomizationError (506),
congestionX733 (507),
corruptData (508),
cpuCyclesLimitExceeded (509),
dataSetOrModemError (510),
degradedSignalX733 (511),
dteDceInterfaceError (512),
enclosureDoorOpenX733 (513),
equipmentMalfunction (514),
excessiveVibration (515),
fileErrorX733 (516),
fireDetected (517),
framingErrorX733 (518),
heatingVentCoolingSystemProblem (519),
humidityUnacceptable (520),
inputOutputDeviceError (521),
inputDeviceError (522),
lanError (523), leakDetected (524),
localNodeTransmissionErrorX733 (525),
lossOfFrameX733 (526),
lossOfSignalX733 (527),
materialSupplyExhausted (528),
multiplexerProblemX733 (529),
outOfMemoryX733 (530),
outputDeviceError (531),
performanceDegraded (532),
powerProblems (533),
pressureUnacceptable (534),
processorProblems (535),
pumpFailureX733 (536),
queueSizeExceeded (537),
receiveFailureX733 (538),
receiverFailureX733 (539),
remoteNodeTransmissionErrorX733 (540),
resourceAtOrNearingCapacity (541),
responseTimeExcessive (542),
retransmissionRateExcessive (543),
softwareErrorX733 (544),
softwareProgramAbnormallyTerminated (545),
softwareProgramError (546),
storageCapacityProblemX733 (547),
temperatureUnacceptable (548),
thresholdCrossed (549),
timingProblemX733 (550),
toxicLeakDetected (551),
transmitFailureX733 (552),
transmitterFailure (553),
underlyingResourceUnavailable (554),
versionMismatchX733 (555),

-- The following are defined in X.736
authenticationFailure (600),
breachOfConfidentiality (601),
cableTamper (602),
delayedInformation (603),
denialOfService (604),
duplicateInformation (605),
informationMissing (606),
informationModificationDetected (607),
informationOutOfSequence (608),
keyExpired (609),
nonRepudiationFailure (610),
outOfHoursActivity (611),
outOfService (612),
proceduralError (613),
unauthorizedAccessAttempt (614),
extendedInformation (615),
other (1024)
}

IANAItuEventType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The ITU event Type values.

The Internet Assigned Number Authority (IANA) is responsible for the assignment of the enumerations in this TC.

Request should come in the form of well-formed SMI [RFC2578] for enumeration names that are unique and sufficiently descriptive.

See http://www.iana.org "
REFERENCE
SYNTAX

INTEGER

{ other (1),
 communicationsAlarm (2),
 qualityOfServiceAlarm (3),
 processingErrorAlarm (4),
 equipmentAlarm (5),
 environmentalAlarm (6),
 integrityViolation (7),
 operationalViolation (8),
 physicalViolation (9),
 securityServiceOrMechanismViolation (10),
 timeDomainViolation (11)
}

END
5.3. Textual Conventions

ITU-ALARM-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI -- [RFC2578]
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]

ituAlarmTc MODULE-IDENTITY
 LAST-UPDATED "200409090000Z" -- September 09, 2004
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 " WG EMail: disman@ietf.org
 Subscribe: disman-request@ietf.org
 http://www.ietf.org/html.charters/disman-charter.html

 Chair: Randy Presuhn
 randy_presuhn@mindspring.com
 Editors: Sharon Chisholm
 Nortel Networks
 PO Box 3511 Station C
 Ottawa, Ont. K1Y 4H7
 Canada
 schishol@nortelnetworks.com

 Dan Romascanu
 Avaya
 Atidim Technology Park, Bldg. #3
 Tel Aviv, 61131
 Israel
 Tel: +972-3-645-8414
 Email: dromasca@avaya.com"

DESCRIPTION
 "This MIB module defines the ITU Alarm
 textual convention for objects not expected to require
 regular extension.

Copyright (C) The Internet Society (2004). The
initial version of this MIB module was published
in RFC 3877. For full legal notices see the RFC
itself. Supplementary information may be available on:
http://www.ietf.org/copyrights/ianamib.html"

REVISION "200409090000Z" -- September 09, 2004
DESCRIPTION
 "Initial version, published as RFC 3877."
::= { mib-2 120 }

ItuPerceivedSeverity ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"ITU perceived severity values"
REFERENCE
"ITU Recommendation M.3100, 'Generic Network Information
Model', 1995
ITU Recommendation X.733, 'Information Technology - Open
Systems Interconnection - System Management: Alarm
Reporting Function', 1992"
SYNTAX INTEGER
 {
 cleared (1),
 indeterminate (2),
 critical (3),
 major (4),
 minor (5),
 warning (6)
 }

ItuTrendIndication ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"ITU trend indication values for alarms."
REFERENCE
"ITU Recommendation M.3100, 'Generic Network Information
Model', 1995
ITU Recommendation X.733, 'Information Technology - Open
Systems Interconnection - System Management: Alarm
Reporting Function', 1992"
SYNTAX INTEGER
 {
 moreSevere (1),
 noChange (2),
 lessSevere (3)
 }

END
5.4. Definitions

ITU-ALARM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Gauge32, mib-2
 -- [RFC2578]
 AutonomousType, RowPointer
 -- [RFC2579]
 SnmpAdminString
 -- [RFC2579]
 alarmListName, alarmModelIndex,
 alarmActiveDateAndTime, alarmActiveIndex
 -- [RFC3877]
 ItuPerceivedSeverity,
 ItuTrendIndication
 -- [RFC3877]
 IANAItuProbableCause,
 IANAItuEventType
 -- [RFC3877]
 MODULE-COMPLIANCE, OBJECT-GROUP
 -- [RFC2580]
 ZeroBasedCounter32
 FROM SNMPv2-SMI -- [RFC2578]
 AutonomicType, RowPointerType
 FROM SNMPv2-TC -- [RFC2579]
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB -- [RFC3411]
 alarmListName, alarmModelIndex,
 alarmActiveDateAndTime, alarmActiveIndex
 FROM ALARM-MIB
 -- [RFC3877]
 ItuPerceivedSeverity,
 ItuTrendIndication
 FROM ITU-ALARM-TC-MIB -- [RFC3877]
 IANAItuProbableCause,
 IANAItuEventType
 FROM IANA-ITU-ALARM-TC-MIB -- [RFC3877]
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF; -- [RFC2580]
 ZeroBasedCounter32
 FROM RMON2-MIB; -- [RFC2021]

ituAlarmMIB MODULE-IDENTITY
 LAST-UPDATED "200409090000Z" -- September 09, 2004
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "WG EMail: disman@ietf.org
 Subscribe: disman-request@ietf.org
 http://www.ietf.org/html.charters/disman-charter.html"
 Chair: Randy Presuhn
 randy_presuhn@mindspring.com
 Editors: Sharon Chisholm
 Nortel Networks
 PO Box 3511 Station C
 Ottawa, Ont. K1Y 4H7
 Canada
 schishol@nortelnetworks.com

 Dan Romascanu
 Avaya
 Atidim Technology Park, Bldg. #3
 Tel Aviv, 61131
DESCRIPTION

"The MIB module describes ITU Alarm information as defined in ITU Recommendation M.3100 [M.3100], X.733 [X.733] and X.736 [X.736]."

Copyright (C) The Internet Society (2004). The initial version of this MIB module was published in RFC 3877. For full legal notices see the RFC itself. Supplementary information may be available on: http://www.ietf.org/copyrights/ianamib.html

REVISION "200409090000Z" -- September 09, 2004

DESCRIPTION

"Initial version, published as RFC 3877."

::= { mib-2 121 }

ituAlarmObjects OBJECT IDENTIFIER ::= { ituAlarmMIB 1 }

ituAlarmModel OBJECT IDENTIFIER ::= { ituAlarmObjects 1 }

ituAlarmActive OBJECT IDENTIFIER ::= { ituAlarmObjects 2 }

ituAlarmTable OBJECT-TYPE
SYNTAX SEQUENCE OF ItuAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A table of ITU Alarm information for possible alarms on the system."

::= { ituAlarmModel 1 }

ituAlarmEntry OBJECT-TYPE
SYNTAX ItuAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entries appear in this table whenever an entry is created in the alarmModelTable with a value of alarmModelState in the range from 1 to 6. Entries disappear from this table whenever the corresponding entries are deleted from the alarmModelTable, including in cases where those entries have been deleted due to local system action. The value of alarmModelSpecificPointer has no effect on the creation or deletion of entries in this table. Values of alarmModelState map to values of ituAlarmPerceivedSeverity as follows:
alarmModelState -> ituAlarmPerceivedSeverity
1 -> clear (1)
2 -> indeterminate (2)
3 -> warning (6)
4 -> minor (5)
5 -> major (4)
6 -> critical (3)

All other values of alarmModelState MUST NOT appear in this table.

This table MUST be persistent across system reboots.

INDEX { alarmListName, alarmModelIndex, ituAlarmPerceivedSeverity }
 ::= { ituAlarmTable 1 }

ItuAlarmEntry ::= SEQUENCE {
 ituAlarmPerceivedSeverity ItuPerceivedSeverity,
 ituAlarmEventType IANAItuEventType,
 ituAlarmProbableCause IANAItuProbableCause,
 ituAlarmAdditionalText SnmpAdminString,
 ituAlarmGenericModel RowPointer }

ituAlarmPerceivedSeverity OBJECT-TYPE
SYNTAX ItuPerceivedSeverity
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "ITU perceived severity values."
REFERENCE "ITU Recommendation M.3100, 'Generic Network Information Model', 1995
 ::= { ituAlarmEntry 1 }

ituAlarmEventType OBJECT-TYPE
SYNTAX IANAItuEventType
MAX-ACCESS read-write
STATUS current
DESCRIPTION "Represents the event type values for the alarms"
REFERENCE "ITU Recommendation M.3100, 'Generic Network Information Model', 1995
ITU probable cause values.

REFERENCES:

Additional text field for the alarm.

REFERENCES:

This object points to the corresponding row in the alarmModelTable for this alarm severity.

This corresponding entry to alarmModelTable could also be derived by performing the reverse of the mapping from alarmModelState to ituAlarmPerceivedSeverity defined
in the description of ituAlarmEntry to determine the appropriate \(\{\text{alarmListName}, \text{alarmModelIndex}, \text{alarmModelState}\}\) for this \(\{\text{alarmListName}, \text{alarmModelIndex}, \text{ituAlarmPerceivedSeverity}\}\)."
\[
\vdash \{\text{ituAlarmEntry 5}\}
\]

-- ITU Active Alarm Table --

\textit{ituAlarmActiveTable} \hspace{1em} \textsc{OBJECT-TYPE}
\begin{itemize}
\item \textsc{SYNTAX} \hspace{1em} SEQUENCE OF ItuAlarmActiveEntry
\item \textsc{MAX-ACCESS} \hspace{1em} not-accessible
\item \textsc{STATUS} \hspace{1em} current
\item \textsc{DESCRIPTION} \hspace{1em} "A table of ITU information for active alarms entries."
\end{itemize}
\[
\vdash \{\text{ituAlarmActiveTable 1}\}
\]

\textit{ituAlarmActiveEntry} \hspace{1em} \textsc{OBJECT-TYPE}
\begin{itemize}
\item \textsc{SYNTAX} \hspace{1em} ItuAlarmActiveEntry
\item \textsc{MAX-ACCESS} \hspace{1em} not-accessible
\item \textsc{STATUS} \hspace{1em} current
\item \textsc{DESCRIPTION} \hspace{1em} "Entries appear in this table when alarms are active. They are removed when the alarm is no longer occurring."
\item \textsc{INDEX} \hspace{1em} \(\{\text{alarmListName}, \text{alarmActiveDateAndTime}, \text{alarmActiveIndex}\}\)
\end{itemize}
\[
\vdash \{\text{ituAlarmActiveEntry 1}\}
\]

\textit{ItuAlarmActiveEntry} \hspace{1em} \textsc{::=} \textsc{SEQUENCE} {
\begin{itemize}
\item \textit{ituAlarmActiveTrendIndication} \hspace{1em} ItuTrendIndication,
\item \textit{ituAlarmActiveDetector} \hspace{1em} AutonomousType,
\item \textit{ituAlarmActiveServiceProvider} \hspace{1em} AutonomousType,
\item \textit{ituAlarmActiveServiceUser} \hspace{1em} AutonomousType
\end{itemize}
}

\textit{ituAlarmActiveTrendIndication} \hspace{1em} \textsc{OBJECT-TYPE}
\begin{itemize}
\item \textsc{SYNTAX} \hspace{1em} ItuTrendIndication
\item \textsc{MAX-ACCESS} \hspace{1em} read-only
\item \textsc{STATUS} \hspace{1em} current
\item \textsc{DESCRIPTION} \hspace{1em} "Represents the trend indication values for the alarms."
\item \textsc{REFERENCE} \hspace{1em} ITU Recommendation M.3100, 'Generic Network Information Model', 1995
\item \textsc{REFERENCE} \hspace{1em} ITU Recommendation X.733, 'Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function', 1992
\end{itemize}
\[
\vdash \{\text{ituAlarmActiveEntry 1}\}
\]
ituAlarmActiveDetector OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Represents the SecurityAlarmDetector object."
 REFERENCE
 "ITU Recommendation X.736, 'Information Technology - Open
 Systems Interconnection - System Management: Security
 Alarm Reporting Function', 1992"
 ::= { ituAlarmActiveEntry 2 }

ituAlarmActiveServiceProvider OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Represents the ServiceProvider object."
 REFERENCE
 "ITU Recommendation X.736, 'Information Technology - Open
 Systems Interconnection - System Management: Security
 Alarm Reporting Function', 1992"
 ::= { ituAlarmActiveEntry 3 }

ituAlarmActiveServiceUser OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Represents the ServiceUser object."
 REFERENCE
 "ITU Recommendation X.736, 'Information Technology - Open
 Systems Interconnection - System Management: Security
 Alarm Reporting Function', 1992"
 ::= { ituAlarmActiveEntry 4 }

-- Statistics and Counters

ituAlarmActiveStatsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ItuAlarmActiveStatsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table represents the ITU alarm statistics
 information."
 ::= { ituAlarmActive 2 }
ituAlarmActiveStatsEntry OBJECT-TYPE
SYNTAX ItuAlarmActiveStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Statistics on the current active ITU alarms."
INDEX { alarmListName }
::= { ituAlarmActiveStatsTable 1 }

ItuAlarmActiveStatsEntry ::= SEQUENCE {
 ituAlarmActiveStatsIndeterminateCurrent Gauge32,
 ituAlarmActiveStatsCriticalCurrent Gauge32,
 ituAlarmActiveStatsMajorCurrent Gauge32,
 ituAlarmActiveStatsMinorCurrent Gauge32,
 ituAlarmActiveStatsWarningCurrent Gauge32,
 ituAlarmActiveStatsIndeterminates ZeroBasedCounter32,
 ituAlarmActiveStatsCriticals ZeroBasedCounter32,
 ituAlarmActiveStatsMajors ZeroBasedCounter32,
 ituAlarmActiveStatsMinors ZeroBasedCounter32,
 ituAlarmActiveStatsWarnings ZeroBasedCounter32
}

ituAlarmActiveStatsIndeterminateCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A count of the current number of active alarms with a
 ituAlarmPerceivedSeverity of indeterminate."
::= { ituAlarmActiveStatsEntry 1 }

ituAlarmActiveStatsCriticalCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A count of the current number of active alarms with a
 ituAlarmPerceivedSeverity of critical."
::= { ituAlarmActiveStatsEntry 2 }

ituAlarmActiveStatsMajorCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "A count of the current number of active alarms with a
 ituAlarmPerceivedSeverity of major."
::= { ituAlarmActiveStatsEntry 3 }
ituAlarmPerceivedSeverity of major.
::= { ituAlarmActiveStatsEntry 3 }

ituAlarmActiveStatsMinorCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the current number of active alarms with a
ituAlarmPerceivedSeverity of minor."
 ::= { ituAlarmActiveStatsEntry 4 }

ituAlarmActiveStatsWarningCurrent OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the current number of active alarms with a
ituAlarmPerceivedSeverity of warning."
 ::= { ituAlarmActiveStatsEntry 5 }

ituAlarmActiveStatsIndeterminates OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the total number of active alarms with a
ituAlarmPerceivedSeverity of indeterminate since system
restart."
 ::= { ituAlarmActiveStatsEntry 6 }

ituAlarmActiveStatsCriticals OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the total number of active alarms with a
ituAlarmPerceivedSeverity of critical since system restart."
 ::= { ituAlarmActiveStatsEntry 7 }

ituAlarmActiveStatsMajors OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A count of the total number of active alarms with a
ituAlarmPerceivedSeverity of major since system restart."
 ::= { ituAlarmActiveStatsEntry 8 }
ituAlarmActiveStatsMinors OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A count of the total number of active alarms with a
ituAlarmPerceivedSeverity of minor since system restart."
::= { ituAlarmActiveStatsEntry 9 }

ituAlarmActiveStatsWarnings OBJECT-TYPE
SYNTAX ZeroBasedCounter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A count of the total number of active alarms with a
ituAlarmPerceivedSeverity of warning since system restart."
::= { ituAlarmActiveStatsEntry 10 }

-- Conformance

ituAlarmConformance OBJECT IDENTIFIER ::= { ituAlarmMIB 2 }
ituAlarmCompliances OBJECT IDENTIFIER ::= { ituAlarmConformance 1 }

ituAlarmCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for systems supporting
the ITU Alarm MIB."
MODULE -- this module
MANDATORY-GROUPS {
 ituAlarmGroup
}
GROUP ituAlarmServiceUserGroup
DESCRIPTION
"This group is optional."
GROUP ituAlarmSecurityGroup
DESCRIPTION
"This group is optional."
GROUP ituAlarmStatisticsGroup
DESCRIPTION
"This group is optional."
::= { ituAlarmCompliances 1 }

ituAlarmGroups OBJECT IDENTIFIER ::= { ituAlarmConformance 2 }

ituAlarmGroup OBJECT-GROUP
OBJECTS {
 ituAlarmEventType,
ituAlarmProbableCause,
ituAlarmGenericModel
}
STATUS current
DESCRIPTION "ITU alarm details list group."
 ::= { ituAlarmGroups 1}

ituAlarmServiceUserGroup OBJECT-GROUP
OBJECTS {
 ituAlarmAdditionalText,
 ituAlarmActiveTrendIndication
}
STATUS current
DESCRIPTION "The use of these parameters is a service-user option."
 ::= { ituAlarmGroups 2 }

ituAlarmSecurityGroup OBJECT-GROUP
OBJECTS {
 ituAlarmActiveDetector,
 ituAlarmActiveServiceProvider,
 ituAlarmActiveServiceUser
}
STATUS current
DESCRIPTION "Security Alarm Reporting Function"
 ::= { ituAlarmGroups 3 }

ituAlarmStatisticsGroup OBJECT-GROUP
OBJECTS {
 ituAlarmActiveStatsIndeterminateCurrent,
 ituAlarmActiveStatsCriticalCurrent,
 ituAlarmActiveStatsMajorCurrent,
 ituAlarmActiveStatsMinorCurrent,
 ituAlarmActiveStatsWarningCurrent,
 ituAlarmActiveStatsIndeterminates,
 ituAlarmActiveStatsCriticals,
 ituAlarmActiveStatsMajors,
 ituAlarmActiveStatsMinors,
 ituAlarmActiveStatsWarnings
}
STATUS current
DESCRIPTION
6. Examples

6.1. Alarms Based on linkUp/linkDown Notifications

This example demonstrates an interface-based alarm that goes into a state of "warning" when a linkDown Notification [RFC2863] occurs but the ifAdminStatus indicates the interface was taken down administratively. If IfAdminStatus is "up" when the linkDown Notification occurs, then there is a problem, so the state of the alarm is critical. A linkUp alarm clears the alarm.

linkDown NOTIFICATION-TYPE
 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
 STATUS current
 DESCRIPTION ""
 ::= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE
 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
 STATUS current
 DESCRIPTION ""
 ::= { snmpTraps 4 }

alarmModelIndex 3
alarmModelState 1
alarmModelNotificationId linkUp
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "linkUp"
alarmModelSpecificPointer ituAlarmEntry.3.1
alarmModelVarbindSubtree ifIndex (1.3.6.1.2.1.2.2.1.1)
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
ituAlarmEventType communicationsAlarm (2)
ituAlarmPerceivedSeverity cleared (1)
ituAlarmGenericModel alarmModelEntry.3.1

alarmModelIndex 3
alarmModelState 2
alarmModelNotificationId linkDown
alarmModelVarbindIndex 2
<table>
<thead>
<tr>
<th>alarmModelVarbindValue</th>
<th>down (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmModelDescription</td>
<td>"linkDown administratively"</td>
</tr>
<tr>
<td>alarmModelSpecificPointer</td>
<td>ituAlarmEntry.3.6</td>
</tr>
<tr>
<td>alarmModelVarbindSubtree</td>
<td>ifIndex (1.3.6.1.2.1.2.2.1.1)</td>
</tr>
<tr>
<td>alarmModelResourcePrefix</td>
<td>0.0</td>
</tr>
<tr>
<td>alarmModelRowStatus</td>
<td>active (1)</td>
</tr>
<tr>
<td>ituAlarmEventType</td>
<td>communicationsAlarm (2)</td>
</tr>
<tr>
<td>ituAlarmPerceivedSeverity</td>
<td>warning (6)</td>
</tr>
<tr>
<td>ituAlarmGenericModel</td>
<td>alarmModelEntry.3.3</td>
</tr>
</tbody>
</table>

alarmModelIndex	3
alarmModelState	3
alarmModelNotificationId	linkDown
alarmModelVarbindIndex	2
alarmModelVarbindValue	up (1)
alarmModelDescription	"linkDown - confirmed problem"
alarmModelSpecificPointer	ituAlarmEntry.3.3
alarmModelVarbindSubtree	ifIndex (1.3.6.1.2.1.2.2.1.1)
alarmModelResourcePrefix	0.0
alarmModelRowStatus	active (1)
ituAlarmEventType	communicationsAlarm (2)
ituAlarmPerceivedSeverity	critical (3)
ituAlarmGenericModel	alarmModelEntry.3.3

alarmActiveIndex	1
alarmActiveDateAndTime	234264573
alarmActiveDateAndTime	DateAndTime,
alarmActiveEngineID	SnmpEngineID,
alarmActiveEngineAddressType	ipV4
alarmActiveEngineAddress	10.10.10.10
alarmActiveContextName	SnmpAdminString,
alarmActiveVariables	3
alarmActiveNotificationID	1.3.6.1.6.3.1.1.5.3
alarmActiveResourceId	1.3.6.1.2.1.2.2.1.1.346
alarmActiveLogPointer	0.0
alarmActiveModelPointer	alarmModelEntry.3.3
alarmActiveSpecificPointer	ituAlarmActiveEntry.1.3
ituAlarmActiveTrendIndication	moreSevere (1)
ituAlarmDetector	0.0
ituAlarmServiceProvider	0.0
ituAlarmServiceUser	0.0

alarmActiveVariableIndex	1
alarmActiveVariableID	sysUpTime.0
alarmActiveVariableValueType	timeTicks(3)
alarmActiveVariableCounter32Val	0
alarmActiveVariableUnsigned32Val	0
alarmActiveVariableTimeTicksVal	46754
alarmActiveVariableInteger32Val 0
alarmActiveVariableOctetStringVal ""
alarmActiveVariableIpAddressVal 0
alarmActiveVariableOidVal 0.0
alarmActiveVariableCounter64Val 0
alarmActiveVariableIndex 2
alarmActiveVariableID snmpTrapOID.0
alarmActiveVariableValueType objectId(7)
alarmActiveVariableCounter32Val 0
alarmActiveVariableUnsigned32Val 0
alarmActiveVariableTimeTicksVal 0
alarmActiveVariableInteger32Val 0
alarmActiveVariableOctetStringVal ""
alarmActiveVariableIpAddressVal 0
alarmActiveVariableOidVal 1.3.6.1.6.3.1.1.5.3
alarmActiveVariableCounter64Val 0
alarmActiveVariableIndex 3
alarmActiveVariableID ifIndex
alarmActiveVariableValueType integer32(4)
alarmActiveVariableCounter32Val 0
alarmActiveVariableUnsigned32Val 0
alarmActiveVariableTimeTicksVal 0
alarmActiveVariableInteger32Val 346
alarmActiveVariableOctetStringVal ""
alarmActiveVariableIpAddressVal 0
alarmActiveVariableOidVal 0.0
alarmActiveVariableCounter64Val 0
alarmActiveVariableIndex 4
alarmActiveVariableID ifAdminStatus
alarmActiveVariableValueType integer32(4)
alarmActiveVariableCounter32Val 0
alarmActiveVariableUnsigned32Val 0
alarmActiveVariableTimeTicksVal 0
alarmActiveVariableInteger32Val up (1)
alarmActiveVariableOctetStringVal ""
alarmActiveVariableIpAddressVal 0
alarmActiveVariableOidVal 0.0
alarmActiveVariableCounter64Val 0
alarmActiveVariableIndex 5
alarmActiveVariableID ifOperStatus
alarmActiveVariableValueType integer32(4)
alarmActiveVariableCounter32Val 0
alarmActiveVariable Unsigned32Val 0
alarmActiveVariableTimeTicksVal 0
alarmActiveVariableInteger32Val down (2)
alarmActiveVariableOctetStringVal ""
alarmActiveVariableIpAddressVal 0
alarmActiveVariableOidVal 0.0
6.2. Temperature Alarms Using Generic Notifications

Consider a system able to detect four different temperature states for a widget - normal, minor, major, critical. The system does not have any Notification definitions for these alarm states. A temperature alarm can be modelled using the generic alarm Notifications of alarmClearState and alarmActive.

```
alarmModelIndex                  5
alarmModelState                  1
alarmModelNotificationId        alarmClearState
alarmModelVarbindIndex          2
alarmModelVarbindValue          cleared (1)
alarmModelDescription           "Acme Widget Temperature Normal"
alarmModelSpecificPointer       ituAlarmEntry.5.1
alarmModelVarbindSubtree        alarmActiveResourceId
alarmModelResourcePrefix        0.0
alarmModelRowStatus             active (1)
ituAlarmEventType               environmentalAlarm (6)
ituPerceivedSeverity            cleared (1)
ituAlarmGenericModel            alarmModelEntry.5.1

alarmModelIndex                  5
alarmModelState                  2
alarmModelNotificationId        alarmActiveState
alarmModelVarbindIndex          2
alarmModelVarbindValue          minor (5)
alarmModelDescription           "Acme Widget Temperature Minor"
alarmModelSpecificPointer       ituAlarmEntry.5.5
alarmModelVarbindSubtree        alarmActiveResourceId
alarmModelResourcePrefix        0.0
alarmModelRowStatus             active (1)
ituAlarmEventState              environmentalAlarm (6)
ituPerceivedSeverity            minor (5)
ituAlarmGenericModel            alarmModelEntry.5.2

alarmModelIndex                  5
alarmModelState                  3
alarmModelNotificationId        alarmActiveState
alarmModelVarbindIndex          2
alarmModelVarbindValue          major (4)
alarmModelDescription           "Acme Widget Temperature Major"
alarmModelSpecificPointer       ituAlarmEntry.5.4
alarmModelVarbindSubtree        alarmActiveResourceId
alarmModelResourcePrefix        0.0
```
6.3. Temperature Alarms Without Notifications

Consider a system able to detect four different temperature states for a widget - normal, minor, major, critical. The system does not have any Notification definitions for these alarm states. A temperature alarm can be modelled without specifying any Notifications in the alarm model. When a temperature state other than normal is detected, an instance of this alarm would be added to the active alarm table, but no Notifications would be sent out.

This could alternatively be accomplished using the models from example 6.2 and by not specifying any target managers in the SNMP-TARGET-MIB, which would allow the alarm state Notifications to be logged in the Notification Log while still preventing Notifications from being transmitted on the wire.
alarmModelIndex 6
alarmModelState 2
alarmModelNotificationId 0.0
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "Widget Temperature"
alarmModelSpecificPointer ituAlarmEntry.6.5
alarmModelVarbindSubtree 0.0
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
ituAlarmEventType environmentalAlarm (6)
ituAlarmPerceivedSeverity minor (5)
ituAlarmGenericModel alarmModelEntry.6.2

alarmModelIndex 6
alarmModelState 3
alarmModelNotificationId 0.0
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "Widget Temperature"
alarmModelSpecificPointer ituAlarmEntry.6.4
alarmModelVarbindSubtree 0.0
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
ituAlarmEventType environmentalAlarm (6)
ituPerceivedSeverity major (4)
ituAlarmGenericModel alarmModelEntry.6.3

alarmModelIndex 6
alarmModelState 4
alarmModelNotificationId 0.0
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "Widget Temperature Severe"
alarmModelSpecificPointer ituAlarmEntry.6.3
alarmModelVarbindSubtree 0.0
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
ituAlarmEventType environmentalAlarm (6)
ituPerceivedSeverity critical (3)
ituAlarmGenericModel alarmModelEntry.6.4
6.4. Printer MIB Alarm Example

Consider the following Notifications defined in the printer MIB [RFC3805]:

prtAlertSeverityLevel OBJECT-TYPE
 -- This value is a type 1 enumeration
SYNTAX INTEGER {
 other(1),
 critical(3),
 warning(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The level of severity of this alert table entry. The printer
determines the severity level assigned to each entry into the
table."
::= { prtAlertEntry 2 }

printerV2Alert NOTIFICATION-TYPE
OBJECTS { prtAlertIndex, prtAlertSeverityLevel, prtAlertGroup,
 prtAlertGroupIndex, prtAlertLocation, prtAlertCode }
STATUS current
DESCRIPTION
 "This trap is sent whenever a critical event is added to the prtAlertTable."
::= { printerV2AlertPrefix 1 }

These Notifications can be used to model a printer alarm as follows:

<table>
<thead>
<tr>
<th>alarmModelIndex</th>
<th>9</th>
<th>alarmModelState</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmModelNotificationId</td>
<td>alarmClearState</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alarmModelVarbindIndex</td>
<td>0</td>
<td>alarmModelVarbindValue</td>
<td>0</td>
</tr>
<tr>
<td>alarmModelDescription</td>
<td>"Printer Alarm"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alarmModelSpecificPointer</td>
<td>0.0</td>
<td>alarmModelVarbindSubtree</td>
<td></td>
</tr>
<tr>
<td>prtAlertGroup</td>
<td>alarmModelResourcePrefix</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>alarmModelRowStatus</td>
<td>active (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarmModelIndex</th>
<th>9</th>
<th>alarmModelState</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmModelNotificationId</td>
<td>printerV2Alert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alarmModelVarbindIndex</td>
<td>2</td>
<td>alarmModelVarbindValue</td>
<td></td>
</tr>
<tr>
<td>warning (4)</td>
<td>alarmModelDescription</td>
<td>"Printer Alarm"</td>
<td></td>
</tr>
<tr>
<td>alarmModelSpecificPointer</td>
<td>0.0</td>
<td>alarmModelVarbindSubtree</td>
<td></td>
</tr>
<tr>
<td>prtAlertGroup</td>
<td>alarmModelResourcePrefix</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>alarmModelRowStatus</td>
<td>active (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarmModelIndex</th>
<th>9</th>
<th>alarmModelState</th>
<th>3</th>
</tr>
</thead>
</table>
6.5. RMON Alarm Example

The RMON MIB [RFC2819] defines a mechanism for generating threshold alarms. When the thresholds are crossed, RisingAlarm and FallingAlarm Notifications are generated as appropriate. These Notifications can be used to model an upper threshold alarm as follows:

```
alarmModelIndex 6
alarmModelState 1
alarmModelNotificationId FallingAlarm
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "RMON Rising Clear Alarm"
alarmModelSpecificPointer 0.0
alarmModelVarbindSubtree alarmIndex
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
```

```
alarmModelIndex 6
alarmModelState 2
alarmModelNotificationId RisingAlarm
alarmModelVarbindIndex 0
alarmModelVarbindValue 0
alarmModelDescription "RMON Rising Alarm"
alarmModelSpecificPointer 0.0
alarmModelVarbindSubtree alarmIndex
alarmModelResourcePrefix 0.0
alarmModelRowStatus active (1)
```
6.6. The Lifetime of an Alarm

The following example demonstrates the relationship between the active alarm table, the clear alarm table and the Notification Log MIB.

Consider a system with alarms modelled as in example 1 and which also supports the informational Notification dsx3LineStatusChange.

dsx3LineStatusChange NOTIFICATION-TYPE
OBJECTS { dsx3LineStatus,
 dsx3LineStatusLastChange }
STATUS current
DESCRIPTION
"A dsx3LineStatusChange trap is sent when the value of an instance of dsx3LineStatus changes. It can be utilized by an NMS to trigger polls. When the line status change results in a lower level line status change (i.e., ds1), then no traps for the lower level are sent."
 ::= { ds3Traps 0 1 }

0. At system start, the active alarm table, alarm clear table and the Notification Log are all empty.

<table>
<thead>
<tr>
<th>alarmActiveTable</th>
<th>nlmLogTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmActiveIndex</td>
<td>alarm</td>
</tr>
<tr>
<td></td>
<td>nlmLogPointer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarmClearTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmClear Index</td>
</tr>
</tbody>
</table>

| | |
| | |
1. Some time later, a link goes down generating a linkDown Notification, which is sent out and logged in the Notification Log. As this Notification is modelled as an alarm state, an entry is added to the active alarm table.

```
<table>
<thead>
<tr>
<th>alarmActiveTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmActiveIndex</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>nlmLogTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>nlmLogPointer</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>alarmClearTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmClear Index</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

2. Some time later, the value of an instance of dsx3LineStatus changes. This Notification is sent out and logged. As this is not modelled into an alarm state, the active alarm table remains unchanged.

```
<table>
<thead>
<tr>
<th>alarmActiveTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmActiveIndex</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nlmLogTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>nlmLogPointer</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarmClearTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmClear Index</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```
3. Some time later, the link goes back up. A linkUp Notification is sent out and logged. As this Notification models the clear alarm for this alarm, the alarm entry is remove from the active alarm table. An entry is added to the clear alarm table.

```
+----------------+--------------------------+
| alarmActiveTable                               |
| +----------------+--------------------------+
| | alarmActiveIndex | alarm                   |
| +----------------+--------------------------+
```

```
+----------------+--------------------------+
| nlmLogTable                               |
| +----------------+--------------------------+
| | nlmLogPointer | Notification       |
| +----------------+--------------------------+
| 1 | linkDown        |
| 2 | dsx3LineStatusChange |
| 3 | linkUp           |
```

```
+----------------+--------------------------+
| alarmClearTable                                  |
| +----------------+--------------------------+
| | alarmClear Index | alarm                    |
| +----------------+--------------------------+
| 1 | linkDown - confirmed problem |
```

7. Security Considerations

There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

The following objects are defined with a MAX-ACCESS clause of read-write or read-create: alarmModelNotificationId, alarmModelVarbindIndex, alarmModelVarbindValue, alarmModelDescription, alarmModelSpecificPointer, alarmModelVarbindSubtree, alarmModelResourcePrefix, alarmModelRowStatus, alarmClearMaximum, ituAlarmEventType, ituAlarmProbableCause, ituAlarmAdditionalText, and ituAlarmGenericModel.
Note that setting the value of alarmClearMaximum too low may result in security related alarms history being prematurely lost.

Changing values of alarmModelRowStatus as part of creating and deleting rows in the alarmModelTable result in adding new alarm models to the system or taking them out respectively. These operations need to be carefully planned. Adding a new model should be made in a consistent manner to avoid the system overflow with alarms. Taking out a model should result in the deletion of all this model’s related alarms in the system.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

Note that the alarm throttling mechanism associated with the alarmActiveState and alarmActiveClear notifications only applies to a given alarm. Defining multiple alarms from the same internal stimulus may then still result in a flood of alarms into the network.

Although the use of community strings in SNMPv1 is not considered an effective means of providing security, security administrators SHOULD consider whether the fact that alarmActiveContextName can reveal community string values would make this object sensitive in their environment.

This MIB module can provide access to information that may also be accessed through manipulation of the SNMP NOTIFICATION-MIB and the NOTIFICATION-LOG-MIB. This is expressed in part through the common indexing structure of nlmLogName [RFC3014], snmpNotifyFilterProfileName [RFC3413], and alarmListName. Consequently, it is RECOMMENDED that security administrators take care to configure a coherent VACM security policy. The objects
alarmActiveLogPointer, alarmActiveModelPointer, alarmActiveSpecificPointer, and alarmClearModelPointer are object identifiers that reference information to which a particular user might not be given direct access. The structure of these object identifiers does not permit the extraction of any sensitive information. Two other objects, alarmClearResourceId, and alarmActiveResourceId, are also syntactically object identifiers, but their structure could provide a user with potentially useful information to which he or she might not otherwise be granted access, such as the existence of a particular resource.

For further discussion of security, see section 3.4.

8. Acknowledgements

This document is a product of the DISMAN Working Group.

9. References

9.1. Normative References

9.2 Informative References

10. Authors’ Addresses

Sharon Chisholm
Nortel Networks
PO Box 3511, Station C
Ottawa, Ontario, K1Y 4H7
Canada

EMail: schishol@nortelnetworks.com

Dan Romascanu
Avaya
Atidim Technology Park, Bldg. #3
Tel Aviv, 61131
Israel

Phone: +972-3-645-8414
EMail: dromasca@avaya.com
11. Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.