Definitions of Managed Objects
for the DS0 and DS0 Bundle Interface Type

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects used for managing DS0 and DS0 Bundle interfaces. This document is a companion document with Definitions of Managed Objects for the DS1/E1/DS2/E2 (RFC 2495 [17]), DS3/E3 (RFC 2496 [18]), and the work in progress, SONET/SDH Interface Types.

This memo specifies a MIB module in a manner that is both compliant to the SNMPv2 SMI, and semantically identical to the peer SNMPv1 definitions.

Table of Contents

1 The SNMP Management Framework 2
2 Overview .. 3
2.1 BONDing Terminology ... 3
2.2 Use of ifTable for DS0 Layer 3
2.3 Using ifStackTable ... 4
2.3.1 Usage of Channelization for DS3, DS1, DS0 6
2.3.2 Usage of ifIndex Mapping for DS0Bundle 7
3 Overview of the MIB ... 7
3.1 DS0 MIB ... 8
3.2 DS0Bundle MIB ... 8
4 Object Definitions for DS0 8
4.1 The DS0 Config Group .. 9
1. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2271 [1].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC 1904 [7].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].
- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].
- A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

2. Overview

These objects are used when the particular media being used to realize an interface is a DS0 interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB:

- ds0 (81)
- ds0Bundle (82)

2.1. BONDing Terminology

Please reference The BONDing Spec [20] for definitions of terms used to describe bonding modes.

2.2. Use of ifTable for DS0 Layer

The following items are defined in RFC 2233 [16].

Only the ifGeneralInformationGroup and ifCounterDiscontinuityGroup need to be supported.

<table>
<thead>
<tr>
<th>ifTable Object</th>
<th>Use for DS0 Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifIndex</td>
<td>Interface index.</td>
</tr>
<tr>
<td>ifDescr</td>
<td>See interfaces MIB [16].</td>
</tr>
<tr>
<td>ifType</td>
<td>ds0(81) or ds0Bundle(82).</td>
</tr>
<tr>
<td>ifSpeed</td>
<td>64000 for ds0 (regardless of the setting of robbed bit signalling) or N*64000 for ds0Bundle.</td>
</tr>
<tr>
<td>ifPhysAddress</td>
<td>The value of the Circuit Identifier. If no Circuit Identifier has been assigned this object should have an octet string with zero length.</td>
</tr>
</tbody>
</table>
ifAdminStatus See interfaces MIB [16].
ifOperStatus See interfaces MIB [16].
ifLastChange See interfaces MIB [16].
ifName See interfaces MIB [16].
ifLinkUpDownTrapEnable Set to disabled(2).
 Supports read-only access.
ifHighSpeed Set to rounded ifSpeed/1000000.
ifConnectorPresent Set to false(2).

2.3. Using ifStackTable

This section describes by example how to use ifStackTable to
represent the relationship of ds0 and ds0Bundles with ds1 interfaces.
Implementors of the stack table for ds0 and ds0Bundle interfaces
should look at the appropriate RFC for the service being stacked on
ds0s and ds0Bundles. Examples given below are for illustration
purposes only.

Example: A Frame Relay Service is being carried on 4 ds0s of a ds1.

+---------------------+
| Frame Relay Service |
+---------------------+
 +---------------------+
 | ds0Bundle |
 +---------------------+
 | | | |
 +---+ +---+ +---+ +---+
 |ds0| |ds0| |ds0| |ds0|
 +---+ +---+ +---+ +---+
 | | | |
 +---------------------+
 | ds1 |
 +---------------------+

The assignment of the index values could for example be:

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FrameRelayService</td>
</tr>
<tr>
<td>2</td>
<td>ds0Bundle</td>
</tr>
<tr>
<td>3</td>
<td>ds0 #1</td>
</tr>
</tbody>
</table>
The ifStackTable is then used to show the relationships between the various interfaces.

ifStackTable Entries

<table>
<thead>
<tr>
<th>HigherLayer</th>
<th>LowerLayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

In the case where the frameRelayService is using a single ds0, then the ds0Bundle is not required.

```
+---------------------+   +---------------------+
| Frame Relay Service |   | ds1                 |
|---------------------|---+---------------------|
|                     |   | ifStackTable Entries |
```

The assignment of the index values could for example be:

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FrameRelayService (type 44)</td>
</tr>
<tr>
<td>2</td>
<td>ds0 (type 81)</td>
</tr>
<tr>
<td>3</td>
<td>ds1 (type 18)</td>
</tr>
</tbody>
</table>

The ifStackTable is then used to show the relationships between the various interfaces.
An example is given here to explain the channelization objects in the DS3, DS1, and DS0 MIBs to help the implementor use the objects correctly. Treatment of E3 and E1 would be similar, with the number of DS0s being different depending on the framing of the E1. Timeslot 16 is not created for framing types that do not pass data over it.

Assume that a DS3 (with ifIndex 1) is channelized into DS1s (without DS2s). The object dsx3Channelization is set to enabledDs1. There will be 28 DS1s in the ifTable. Assume the entries in the ifTable for the DS1s are created in channel order and the ifIndex values are 2 through 29. In the DS1 MIB, there will be an entry in the dsx1ChanMappingTable for each ds1. The entries will be as follows:

```
ifIndex  dsx1Ds1ChannelNumber   dsx1ChanMappedIfIndex
1        1                      2
1        2                      3
......
1        28                     29
```

In addition, the DS1s are channelized into DS0s. The object dsx1Channelization is set to enabledDs0 for each DS1. When this object is set to this value, 24 DS0s are created by the agent. There will be 24 DS0s in the ifTable for each DS1. If the dsx1Channelization is set to disabled, the 24 DS0s are destroyed.

Assume the entries in the ifTable are created in channel order and the ifIndex values for the DS0s in the first DS1 are 30 through 53. In the DS0 MIB, there will be an entry in the dsx0ChanMappingTable for each DS0. The entries will be as follows:
dsx0ChanMappingTable Entries

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>dsx0Ds0ChannelNumber</th>
<th>dsx0ChanMappedIfIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>53</td>
</tr>
</tbody>
</table>

2.3.2. Usage of ifIndex Mapping for DS0Bundle

An example is given here to explain the ifIndex mapping objects in the DS0Bundle MIB to help the implementor use the objects correctly.

Assume that a DS1 (with ifIndex 1) is channelized into DS0s. There will be 24 DS0s in the ifTable. Assume the entries in the ifTable for the DS0s are created in channel order and the ifIndex values are 2 through 25. Now, assume that there are two bundles on the DS1. The first one uses channels 1 and 2. The second uses channels 3 and 4. There will be two ifTable entries for these bundles, with values of 26 and 27 for ifIndex. There will be an entry in the dsx0BundleTable for each bundle. The entries will be as follows:

dsx0BundleTable Entries

<table>
<thead>
<tr>
<th>dsx0BundleIndex</th>
<th>dsx0BundleIfIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
</tbody>
</table>

There will be an entry in the dsx0ConfigTable for each DS0. The entries will be as follows:

dsx0ConfigTable Entries

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>dsx0Ds0ChannelNumber</th>
<th>dsx0Ds0BundleMappedIfIndex</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Overview of the MIB

This document contains 2 MIB modules, the DS0 MIB and the DS0Bundle MIB.
3.1. DS0 MIB

The DS0 MIB is used to represent individual DS0s in a DS1 or E1. Variables in this MIB would be created for each DS0 in the ifTable. This MIB contains the following group:

The DS0 Config Group - This group contains configuration information about a particular DS0.

3.2. DS0Bundle MIB

The DS0Bundle MIB is used to represent collections of DS0s that are used together to carry data within a DS1/E1 at speeds greater than that of a single DS0. DS0Bundles are created on top of DS0s and are represented that way in the ifStackTable. This MIB contains the following groups:

The DS0 Bundle Group - This group contains objects used for creating new ds0Bundles. This group is mandatory.

The DS0 Bonding Group - This group contains information about bonding for a ds0Bundle, if bonding is enabled. This group is optional.

4. Object Definitions for DS0

DS0-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, transmission
 FROM SNMPv2-SMI
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 DisplayString, TruthValue
 FROM SNMPv2-TC
 ifIndex, InterfaceIndex,
 InterfaceIndexOrZero
 FROM IF-MIB;

-- This is the MIB module for the DS0 Interface objects.

ds0 MODULE-IDENTITY
 LAST-UPDATED "9807161630Z"
 ORGANIZATION "IETF Trunk MIB Working Group"
 CONTACT-INFO
 " David Fowler
 Postal: Newbridge Networks Corporation
 600 March Road
 Kanata, Ontario, Canada K2K 2E6
 Tel: +1 613 591 3600

Fowler, Ed. Standards Track [Page 8]
DESCRIPTION
"The MIB module to describe DS0 interfaces objects."

REVISION "9805242010Z"
DESCRIPTION
"Initial version of the DS0-MIB."

::= { transmission 81 }

-- The DS0 Config Group

-- Implementation of this group is mandatory for all systems that use a DS0 Interface.

-- The DS0 Config Group consists of two tables:
-- DS0 Configuration Table
-- DS0 Channel Mapping Table

-- The DS0 Configuration Table

dsx0ConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dsx0ConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DS0 Configuration table."
::= { ds0 1 }

dsx0ConfigEntry OBJECT-TYPE
SYNTAX Dsx0ConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the DS0 Configuration table. There is an entry in this table for each DS0 interface."
INDEX { ifIndex }
::= { dsx0ConfigTable 1 }

Dsx0ConfigEntry ::= SEQUENCE {
 dsx0Ds0ChannelNumber INTEGER,
 dsx0RobbedBitSignalling TruthValue,
 dsx0CircuitIdentifier DisplayString,
 dsx0IdleCode INTEGER,
 dsx0SeizedCode INTEGER,
dsx0ReceivedCode INTEGER,
 dsx0TransmitCodesEnable TruthValue,
 dsx0Ds0BundleMappedIfIndex InterfaceIndexOrZero
}

dsx0Ds0ChannelNumber OBJECT-TYPE
SYNTAX INTEGER(0..31)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the channel number of the
ds0 on its DS1/E1."
 ::= { dsx0ConfigEntry 1 }

dsx0RobbedBitSignalling OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates if Robbed Bit Signalling is
turned on or off for a given ds0. This only applies to DS0s on a DS1 link. For E1 links the value is always off (false)."
 ::= { dsx0ConfigEntry 2 }

dsx0CircuitIdentifier OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object contains the transmission vendor’s
circuit identifier, for the purpose of facilitating troubleshooting."
 ::= { dsx0ConfigEntry 3 }

dsx0IdleCode OBJECT-TYPE
SYNTAX INTEGER(0..15)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object contains the code transmitted in the
ABCD bits when the ds0 is not connected and
dsx0TransmitCodesEnable is enabled. The object is a bitmap and the various bit positions are:

1 D bit
2 C bit
4 B bit
8 A bit"
dsx0SeizedCode OBJECT-TYPE
SYNTAX INTEGER(0..15)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object contains the code transmitted in the
ABCD bits when the ds0 is connected and
dsx0TransmitCodesEnable is enabled. The object is
a bitmap and the various bit positions are:
 1 D bit
 2 C bit
 4 B bit
 8 A bit"
 ::= { dsx0ConfigEntry 4 }

dsx0ReceivedCode OBJECT-TYPE
SYNTAX INTEGER(0..15)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the code being received in
the ABCD bits. The object is a bitmap and the
various bit positions are:
 1 D bit
 2 C bit
 4 B bit
 8 A bit"
 ::= { dsx0ConfigEntry 5 }

dsx0TransmitCodesEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object determines if the idle and seized
codes are transmitted. If the value of this object
is true then the codes are transmitted."
 ::= { dsx0ConfigEntry 6 }

dsx0Ds0BundleMappedIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the ifIndex value assigned
by the agent for the ds0Bundle(82) ifEntry to
which the given ds0(81) ifEntry may belong.

If the given ds0(81) ifEntry does not belong to any ds0Bundle(82) ifEntry, then this object has a value of zero.

While this object provides information that can also be found in the ifStackTable, it provides this same information with a single table lookup, rather than by walking the ifStackTable to find the possibly non-existent ds0Bundle(82) ifEntry that may be stacked above the given ds0(81) ifTable entry."

::= { dsx0ConfigEntry 8 }

-- The DS0 Channel Mapping Table

dsx0ChanMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dsx0ChanMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DS0 Channel Mapping table. This table maps a DS0 channel number on a particular DS1/E1 into an ifIndex."
::= { ds0 3 }

dsx0ChanMappingEntry OBJECT-TYPE
SYNTAX Dsx0ChanMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the DS0 Channel Mapping table. There is an entry in this table corresponding to each ds0 ifEntry within any interface that is channelized to the individual ds0 ifEntry level.

This table is intended to facilitate mapping from channelized interface / channel number to DS0 ifEntry. (e.g. mapping (DS1 ifIndex, DS0 Channel Number) -> ifIndex)

While this table provides information that can also be found in the ifStackTable and dsx0ConfigTable, it provides this same information with a single table lookup, rather than by walking the ifStackTable to find the various constituent ds0 ifTable entries, and testing various
dsx0ConfigTable entries to check for the entry with the applicable DS0 channel number.
INDEX { ifIndex, dsx0Ds0ChannelNumber }
 ::= { dsx0ChanMappingTable 1 }

Dsx0ChanMappingEntry ::=
 SEQUENCE {
 dsx0ChanMappedIfIndex InterfaceIndex
 }

dsx0ChanMappedIfIndex OBJECT-TYPE
 SYNTAX InterfaceIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object indicates the ifIndex value assigned by the agent for the individual ds0 ifEntry that corresponds to the given DS0 channel number (specified by the INDEX element dsx0Ds0ChannelNumber) of the given channelized interface (specified by INDEX element ifIndex)."
 ::= { dsx0ChanMappingEntry 1 }

-- conformance information

ds0Conformance OBJECT IDENTIFIER ::= { ds0 2 }
ds0Groups OBJECT IDENTIFIER ::= { ds0Conformance 1 }
ds0Compliances OBJECT IDENTIFIER ::= { ds0Conformance 2 }

-- compliance statements

ds0Compliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for DS0 interfaces."
 MODULE -- this module
 MANDATORY-GROUPS { ds0ConfigGroup }

 OBJECT dsx0RobbedBitSignalling
 MIN-ACCESS read-only
 DESCRIPTION
 "The ability to set RBS is not required."
 OBJECT dsx0CircuitIdentifier
 MIN-ACCESS read-only
 DESCRIPTION
"The ability to set the circuit identifier is not required."

OBJECT dsx0IdleCode
MIN-ACCESS read-only
DESCRIPTION
"The ability to set the idle code is not required."

OBJECT dsx0SeizedCode
MIN-ACCESS read-only
DESCRIPTION
"The ability to set the seized code is not required."

OBJECT dsx0TransmitCodesEnable
MIN-ACCESS read-only
DESCRIPTION
"The ability to enable and disable the transmitting of idle and seized codes is not required."

::= { ds0Compliances 1 }

-- units of conformance

ds0ConfigGroup OBJECT-GROUP
OBJECTS { dsx0Ds0ChannelNumber,
 dsx0RobbedBitSignalling,
 dsx0CircuitIdentifier,
 dsx0IdleCode,
 dsx0SeizedCode,
 dsx0ReceivedCode,
 dsx0TransmitCodesEnable,
 dsx0Ds0BundleMappedIfIndex,
 dsx0ChanMappedIfIndex }
STATUS current
DESCRIPTION
"A collection of objects providing configuration information applicable to all DS0 interfaces."
::= { ds0Groups 1 }

END
5. Object Definitions for DS0 Bundle

DS0BUNDLE-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 transmission FROM SNMPv2-SMI
 MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
 DisplayString, RowStatus,
 TestAndIncr FROM SNMPv2-TC
 ifIndex, InterfaceIndex FROM IF-MIB;

-- This is the MIB module for the DS0Bundle Interface
-- objects.

ds0Bundle MODULE-IDENTITY
LAST-UPDATED "9807161630Z"
ORGANIZATION "IETF Trunk MIB Working Group"
CONTACT-INFO
 " David Fowler
Postal: Newbridge Networks Corporation
 600 March Road
 Kanata, Ontario, Canada K2K 2E6
 Tel: +1 613 591 3600
 Fax: +1 613 599 3619
 E-mail: davef@newbridge.com"
DESCRIPTION
 "The MIB module to describe
DS0 Bundle interfaces objects."
REVISION "9805242010Z"
DESCRIPTION
 "Initial version of the DS0BUNDLE-MIB."

::= { transmission 82 }

-- -- The DS0 Bundle Config Group
-- -- Implementation of this group is mandatory for all
-- systems that use a DS0Bundle Interface.
-- -- The DS0 Bundle Config Group consists of one table:
-- -- DS0 Bundle Table
-- -- The DS0 Bundle Table
dsx0BundleNextIndex OBJECT-TYPE
SYNTAX TestAndIncr
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is used to assist the manager in selecting a value for dsx0BundleIndex. Because this object is of syntax TestAndIncr (see the SNMPv2-TC document, RFC 1903) it can also be used to avoid race conditions with multiple managers trying to create rows in the table.

If the result of the SET for dsx0BundleNextIndex is not success, this means the value has been changed from index (i.e. another manager used the value), so a new value is required.

The algorithm is:
done = false
while done == false
 index = GET (dsx0BundleNextIndex.0)
 SET (dsx0BundleNextIndex.0=index)
 if (set failed)
 done = false
 else
 SET(dsx0BundleRowStatus.index=createAndGo)
 if (set failed)
 done = false
 else
 done = true
 other error handling"
::= { ds0Bundle 2 }

dsx0BundleTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dsx0BundleEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"There is an row in this table for each ds0Bundle in the system. This table can be used to (indirectly) create rows in the ifTable with ifType = 'ds0Bundle(82)'." ::= { ds0Bundle 3 }

dsx0BundleEntry OBJECT-TYPE
SYNTAX Dsx0BundleEntry
MAX-ACCESS not-accessible
STATUS current
There is a row in entry in this table for each ds0Bundle interface.

INDEX { dsx0BundleIndex }
::= { dsx0BundleTable 1 }

Dsx0BundleEntry ::= SEQUENCE {
 dsx0BundleIndex INTEGER,
 dsx0BundleIfIndex InterfaceIndex,
 dsx0BundleCircuitIdentifier DisplayString,
 dsx0BundleRowStatus RowStatus
}

dsx0BundleIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A unique identifier for a ds0Bundle. This is not
 the same value as ifIndex. This table is not
 indexed by ifIndex because the manager has to
 choose the index in a createable row and the agent
 must be allowed to select ifIndex values."
::= { dsx0BundleEntry 1 }

dsx0BundleIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The ifIndex value the agent selected for the
 (new) ds0Bundle interface."
::= { dsx0BundleEntry 2 }

dsx0BundleCircuitIdentifier OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "This variable contains the transmission vendor’s
 circuit identifier, for the purpose of
 facilitating troubleshooting."
::= { dsx0BundleEntry 3 }

dsx0BundleRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to create and delete rows in this table."
::= { dsx0BundleEntry 4 }

-- The DS0 Bonding Group

-- Implementation of this group is optional for all systems that use a DS0Bundle Interface.

-- The DS0 Bonding Group consists of one table:
-- DS0 Bonding Table

-- The DS0 Bonding Table

dsx0BondingTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dsx0BondingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The DS0 Bonding table."
::= { ds0Bundle 1 }

dsx0BondingEntry OBJECT-TYPE
SYNTAX Dsx0BondingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the DS0 Bonding table. There is a row in this table for each DS0Bundle interface."
INDEX { ifIndex }
::= { dsx0BondingTable 1 }

Dsx0BondingEntry ::= SEQUENCE {
 dsx0BondMode INTEGER,
 dsx0BondStatus INTEGER,
 dsx0BondRowStatus RowStatus
}

dsx0BondMode OBJECT-TYPE
SYNTAX INTEGER {
 none(1),
 other(2),
 mode0(3),
 mode1(4),
 mode2(5),
}
mode3(6)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates which BONDing mode is used, if any, for a ds0Bundle. Mode0 provides parameter and number exchange with no synchronization. Mode 1 provides parameter and number exchange. Mode 1 also provides synchronization during initialization but does not include inband monitoring. Mode 2 provides all of the above plus inband monitoring. Mode 2 also steals 1/64th of the bandwidth of each channel (thus not supporting n x 56/64 kbit/s data channels for most values of n). Mode 3 provides all of the above, but also provides n x 56/64 kbit/s data channels. Most common implementations of Mode 3 add an extra channel to support the inband monitoring overhead. ModeNone should be used when the interface is not performing bandwidth-on-demand."
::= { dsx0BondingEntry 1 }

dsx0BondStatus OBJECT-TYPE
SYNTAX INTEGER {
 idle(1),
 callSetup(2),
 dataTransfer(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the current status of the bonding call using this ds0Bundle. idle(1) should be used when the bonding mode is set to none(1)."
::= { dsx0BondingEntry 2 }

dsx0BondRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to create new rows in this table, modify existing rows, and to delete existing rows."
::= { dsx0BondingEntry 3 }
-- conformance information

ds0BundleConformance OBJECT IDENTIFIER ::= { ds0Bundle 4 }

ds0BundleGroups OBJECT IDENTIFIER ::= { ds0BundleConformance 1 }

ds0BundleCompliances OBJECT IDENTIFIER ::= { ds0BundleConformance 2 }

-- compliance statements

ds0BundleCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for DS0Bundle interfaces."

MODULE -- this module
MANDATORY-GROUPS {ds0BundleConfigGroup }

GROUP ds0BondingGroup
DESCRIPTION
"Implementation of this group is optional for all systems that attach to a DS0Bundle Interface."

OBJECT dsx0BundleRowStatus
SYNTAX INTEGER {
 active(1),
 createAndGo(4),
 destroy(6)
}
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation to this object, and only three of the six enumerated values for the RowStatus textual convention need be supported. Only supporting createAndGo for a creation process prevents the manager from creating an inactive row in the ds0BundleTable. Inactive rows in the ds0BundleTable do not make sense."

OBJECT dsx0BundleCircuitIdentifier
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET
operation to this object."

::= { ds0BundleCompliances 1 }

- units of conformance

ds0BondingGroup OBJECT-GROUP
OBJECTS { dsx0BondMode,
 dsx0BondStatus,
 dsx0BondRowStatus }
STATUS current
DESCRIPTION
"A collection of objects providing
configuration information applicable
to all DS0 interfaces."

::= { ds0BundleGroups 1 }
ds0BundleConfigGroup OBJECT-GROUP
OBJECTS { dsx0BundleNextIndex,
 dsx0BundleIfIndex,
 dsx0BundleCircuitIdentifier,
 dsx0BundleRowStatus }
STATUS current
DESCRIPTION
"A collection of objects providing the ability to
create a new ds0Bundle in the ifTable as well as
configuration information about the ds0Bundle."

::= { ds0BundleGroups 2 }
END

6. Intellectual Property

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF’s procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

7. Acknowledgments

This document was produced by the Trunk MIB Working Group.

8. References

9. Security Considerations

SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET (read) the objects in this MIB.

It is recommended that the implementors consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2274 [12] and the View-based Access Control Model RFC 2275 [15] is recommended.
It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them.

Setting the following objects to an inappropriate value can cause loss of traffic. In the case of dsx0RobbedBitSignalling, for example, the nature of the traffic flowing on the DS0 can be affected.

- dsx0RobbedBitSignalling
- dsx0IdleCode
- dsx0SeizedCode
- dsx0TransmitCodesEnable
- dsx0BundleRowStatus
- dsx0BondMode
- dsx0BondRowStatus

Setting the following objects is mischievous, but not harmful to traffic.

- dsx0CircuitIdentifier
- dsx0BundleNextIndex

10. Author’s Address

David Fowler
Newbridge Networks
600 March Road
Kanata, Ontario, Canada K2K 2E6

Phone: (613) 599-3600, ext 6559
EMail: davef@newbridge.com
11. Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.