Definitions of Managed Objects for RS-232-like Hardware Devices using SMIV2

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Introduction .. 1
2. The SNMPv2 Network Management Framework 1
 2.1 Object Definitions .. 2
3. Overview .. 2
 3.1 Relationship to Interface MIB 3
4. Definitions .. 3
5. Acknowledgements ... 20
6. References .. 20
7. Security Considerations .. 21
8. Author’s Address ... 21

1. Introduction

This memo defines an extension to the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for the management of RS-232-like devices.

2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major components. They are:

- RFC 1442 [1] which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management.
- STD 17, RFC 1213 [2] defines MIB-II, the core set of managed objects for the Internet suite of protocols.
2.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Overview

The RS-232-like Hardware Device MIB applies to interface ports that might logically support the Interface MIB, a Transmission MIB, or the Character MIB. The most common example is an RS-232 port with modem signals.

The RS-232-like Hardware Device MIB is mandatory for all systems that have such a hardware port supporting services managed through some other MIB.

The MIB includes multiple similar types of hardware, and as a result contains objects not applicable to all of those types. The compliance definitions herein thus have a general group for all implementations, and separate groups for the different types of ports, such as asynchronous and synchronous.

The RS-232-like Hardware Port MIB includes RS-232, RS-422, RS-423, V.35, and other asynchronous or synchronous, serial physical links with a similar set of control signals.

The MIB contains objects that relate to physical layer connections. Such connections may provide interesting hardware signals (other than for basic data transfer), such as RNG and DCD. Hardware ports also have such attributes as speed and bits per character.
The MIB comprises one base object and four tables, detailed in the following sections. The tables contain objects for all ports, asynchronous ports, and input and output control signals.

3.1. Relationship to Interface MIB

The RS-232-like MIB is one of many MIBs designed for layered use as described in the Interface MIB [5]. In most implementations where it is present, it will be in the lowest interface sublayer, that is, the RS-232-like MIB represents the physical layer, providing service to higher layers such as the Character MIB [6] or PPP MIB [7].

The Interface MIB’s ifTestTable and ifRcvAddressTable are not relevant to the RS-232-like MIB.

The RS-232-like MIB is relevant for ifType values rs232(33), v35(45), and perhaps others.

The RS-232-like MIB requires the conformance groups ifGeneralGroup, and ifFixedLengthGroup.

The value of ifSpeed is the same as rs232PortOutSpeed.

Usefulness of error counters in this MIB depends on the octet counters in ifFixedLengthGroup.

4. Definitions

RS-232-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Counter32, Integer32
FROM SNMPv2-SMI

InterfaceIndex
FROM IF-MIB

transmission
FROM RFC1213-MIB

MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF;

rs232 MODULE-IDENTITY
LAST-UPDATED "9405261700Z"
ORGANIZATION "IETF Character MIB Working Group"
CONTACT-INFO
 " Bob Stewart
 Postal: Xyplex, Inc."
DESCRIPTION
"The MIB module for RS-232-like hardware devices."
::= { transmission 33 }

-- Generic RS-232-like information

rs232Number OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of ports (regardless of their current state) in the RS-232-like general port table."
::= { rs232 1 }

-- RS-232-like General Port Table

rs232PortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232PortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of port entries. The number of entries is given by the value of rs232Number."
::= { rs232 2 }

rs232PortEntry OBJECT-TYPE
SYNTAX Rs232PortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Status and parameter values for a port."
INDEX { rs232PortIndex }
::= { rs232PortTable 1 }

Rs232PortEntry ::= SEQUENCE {
 rs232PortIndex
 InterfaceIndex,
 rs232PortType
}
rs232PortIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of ifIndex for the port. By convention and if possible, hardware port numbers map directly to external connectors. The value for each port must remain constant at least from one re-initialization of the network management agent to the next."
::= { rs232PortEntry 1 }

rs232PortType OBJECT-TYPE
SYNTAX INTEGER { other(1), rs232(2), rs422(3),
 rs423(4), v35(5), x21(6) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The port’s hardware type."
::= { rs232PortEntry 2 }

rs232PortInSigNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of input signals for the port in the input signal table (rs232PortInSigTable). The table contains entries only for those signals the software can detect and that are useful to observe."
::= { rs232PortEntry 3 }
rs232PortOutSigNumber OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of output signals for the port in the
output signal table (rs232PortOutSigTable). The
table contains entries only for those signals the
software can assert and that are useful to observe."
::= { rs232PortEntry 4 }

rs232PortInSpeed OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port’s input speed in bits per second. Note that
non-standard values, such as 9612, are probably not allowed
on most implementations."
::= { rs232PortEntry 5 }

rs232PortOutSpeed OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port’s output speed in bits per second. Note that
non-standard values, such as 9612, are probably not allowed
on most implementations."
::= { rs232PortEntry 6 }

rs232PortInFlowType OBJECT-TYPE
SYNTAX INTEGER { none(1), ctsRts(2), dsrDtr(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port’s type of input flow control. ‘none’
indicates no flow control at this level.
‘ctsRts’ and ‘dsrDtr’ indicate use of the indicated
hardware signals."
::= { rs232PortEntry 7 }

rs232PortOutFlowType OBJECT-TYPE
SYNTAX INTEGER { none(1), ctsRts(2), dsrDtr(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The port’s type of output flow control. ‘none’
indicates no flow control at this level. ‘ctsRts’ and ‘dsrDtr’ indicate use of the indicated hardware signals."
::= { rs232PortEntry 8 }

-- RS-232-like Asynchronous Port Table

rs232AsyncPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232AsyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of asynchronous port entries. Entries need not exist for synchronous ports."
 ::= { rs232 3 }

rs232AsyncPortEntry OBJECT-TYPE
SYNTAX Rs232AsyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Status and parameter values for an asynchronous port."
INDEX { rs232AsyncPortIndex }
 ::= { rs232AsyncPortTable 1 }

Rs232AsyncPortEntry ::= SEQUENCE {
 rs232AsyncPortIndex
 InterfaceIndex,
 rs232AsyncPortBits
 INTEGER,
 rs232AsyncPortStopBits
 INTEGER,
 rs232AsyncPortParity
 INTEGER,
 rs232AsyncPortAutobaud
 INTEGER,
 rs232AsyncPortParityErrs
 Counter32,
 rs232AsyncPortFramingErrs
 Counter32,
 rs232AsyncPortOverrunErrs
 Counter32
 }

Stewart
rs232AsyncPortIndex OBJECT-TYPE
 SYNTAX InterfaceIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A unique value for each port. Its value is the
 same as rs232PortIndex for the port."
 ::= { rs232AsyncPortEntry 1 }

rs232AsyncPortBits OBJECT-TYPE
 SYNTAX INTEGER (5..8)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The port’s number of bits in a character."
 ::= { rs232AsyncPortEntry 2 }

rs232AsyncPortStopBits OBJECT-TYPE
 SYNTAX INTEGER { one(1), two(2),
 oneAndHalf(3), dynamic(4) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The port’s number of stop bits."
 ::= { rs232AsyncPortEntry 3 }

rs232AsyncPortParity OBJECT-TYPE
 SYNTAX INTEGER { none(1), odd(2), even(3),
 mark(4), space(5) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The port’s sense of a character parity bit."
 ::= { rs232AsyncPortEntry 4 }

rs232AsyncPortAutobaud OBJECT-TYPE
 SYNTAX INTEGER { enabled(1), disabled(2) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A control for the port’s ability to automatically
 sense input speed.

 When rs232PortAutoBaud is ‘enabled’, a port may
 autobaud to values different from the set values for
 speed, parity, and character size. As a result a
 network management system may temporarily observe
 values different from what was previously set."
::= { rs232AsyncPortEntry 5 }

rs232AsyncPortParityErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of characters with a parity error,
input from the port since system re-initialization
and while the port state was 'up' or 'test'."
::= { rs232AsyncPortEntry 6 }

rs232AsyncPortFramingErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of characters with a framing error,
input from the port since system re-initialization
and while the port state was 'up' or 'test'."
::= { rs232AsyncPortEntry 7 }

rs232AsyncPortOverrunErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of characters with an overrun error,
input from the port since system re-initialization
and while the port state was 'up' or 'test'."
::= { rs232AsyncPortEntry 8 }

-- RS-232-like Synchronous Port Table

rs232SyncPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232SyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of asynchronous port entries. Entries need
not exist for synchronous ports."
::= { rs232 4 }

rs232SyncPortEntry OBJECT-TYPE
SYNTAX Rs232SyncPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Status and parameter values for a synchronous port."
INDEX { rs232SyncPortIndex }
 ::= { rs232SyncPortTable 1 }

Rs232SyncPortEntry ::= SEQUENCE {
 rs232SyncPortIndex
 InterfaceIndex,
 rs232SyncPortClockSource
 INTEGER,
 rs232SyncPortFrameCheckErrs
 Counter32,
 rs232SyncPortTransmitUnderrunErrs
 Counter32,
 rs232SyncPortReceiveOverrunErrs
 Counter32,
 rs232SyncPortInterruptedFrames
 Counter32,
 rs232SyncPortAbortedFrames
 Counter32,
 rs232SyncPortRole
 INTEGER,
 rs232SyncPortEncoding
 INTEGER,
 rs232SyncPortRTSControl
 INTEGER,
 rs232SyncPortRTSCTSDelay
 Integer32,
 rs232SyncPortMode
 INTEGER,
 rs232SyncPortIdlePattern
 INTEGER,
 rs232SyncPortMinFlags
 Integer32
}

rs232SyncPortIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A unique value for each port. Its value is the same as rs232PortIndex for the port."
 ::= { rs232SyncPortEntry 1 }
rs232SyncPortClockSource OBJECT-TYPE
SYNTAX INTEGER { internal(1), external(2), split(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Source of the port's bit rate clock. 'split' means
the transmit clock is internal and the receive clock
is external."
 ::= { rs232SyncPortEntry 2 }

rs232SyncPortFrameCheckErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of frames with an invalid frame check
sequence, input from the port since system
re-initialization and while the port state was 'up'
or 'test'."
 ::= { rs232SyncPortEntry 3 }

rs232SyncPortTransmitUnderrunErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of frames that failed to be
transmitted on the port since system
re-initialization and while the port state was 'up'
or 'test' because data was not available to the
transmitter in time."
 ::= { rs232SyncPortEntry 4 }

rs232SyncPortReceiveOverrunErrs OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of frames that failed to be received
on the port since system re-initialization and while
the port state was 'up' or 'test' because the
receiver did not accept the data in time."
 ::= { rs232SyncPortEntry 5 }

rs232SyncPortInterruptedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Total number of frames that failed to be received or transmitted on the port due to loss of modem signals since system re-initialization and while the port state was 'up' or 'test'."
::= { rs232SyncPortEntry 6 }

rs232SyncPortAbortedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Number of frames aborted on the port due to receiving an abort sequence since system re-initialization and while the port state was 'up' or 'test'."
::= { rs232SyncPortEntry 7 }

rs232SyncPortRole OBJECT-TYPE
SYNTAX INTEGER { dte(1), dce(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The role the device is playing that is using this port.
 dte means the device is performing the role of data terminal equipment
 dce means the device is performing the role of data circuit-terminating equipment."
DEFVAL { dce }
::= { rs232SyncPortEntry 8 }

rs232SyncPortEncoding OBJECT-TYPE
SYNTAX INTEGER { nrz(1), nrzi(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The bit stream encoding technique that is in effect for this port.
 nrz for Non-Return to Zero encoding
 nrzi for Non-Return to Zero Inverted encoding."
DEFVAL { nrz }
::= { rs232SyncPortEntry 9 }

rs232SyncPortRTSControl OBJECT-TYPE
SYNTAX INTEGER { controlled(1), constant(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The method used to control the Request To Send (RTS) signal.

controlled when the DTE is asserts RTS each time data needs to be transmitted and drops RTS at some point after data transmission begins.

If rs232SyncPortRole is ‘dte’, the RTS is an output signal. The device will issue a RTS and wait for a CTS from the DCE before starting to transmit.

If rs232SyncPortRole is ‘dce’, the RTS is an input signal. The device will issue a CTS only after having received RTS and waiting the rs232SyncPortRTSCTSDelay interval.

constant when the DTE constantly asserts RTS."

DEFVAL { constant }
::= { rs232SyncPortEntry 10 }

rs232SyncPortRTSCTSDelay OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The interval (in milliseconds) that the DCE must wait after it sees RTS asserted before asserting CTS. This object exists in support of older synchronous devices that cannot recognize CTS within a certain interval after it asserts RTS."

DEFVAL { 0 }
::= { rs232SyncPortEntry 11 }

rs232SyncPortMode OBJECT-TYPE
SYNTAX INTEGER { fdx(1), hdx(2), simplex-receive(3), simplex-send(4) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The mode of operation of the port with respect to the direction and simultaneity of data transfer."
fdx when frames on the data link can be transmitted and received at the same time

hdx when frames can either be received from the data link or transmitted onto the data link but not at the same time.

simplex-receive when frames can only be received on this data link.

simplex-send when frames can only be sent on this data link.

DEFVAL { fdx }
::= { rs232SyncPortEntry 12 }

rs232SyncPortIdlePattern OBJECT-TYPE
SYNTAX INTEGER { mark(1), space(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The bit pattern used to indicate an idle line."
DEFVAL { space }
::= { rs232SyncPortEntry 13 }

rs232SyncPortMinFlags OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The minimum number of flag patterns this port needs in order to recognize the end of one frame and the start of the next. Plausible values are 1 and 2."
DEFVAL { 2 }
::= { rs232SyncPortEntry 14 }

-- Input Signal Table

rs232InSigTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232InSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of port input control signal entries implemented and visible to the software on the port, and useful to monitor."
::= { rs232 5 }

rs232InSigEntry OBJECT-TYPE
SYNTAX Rs232InSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Input control signal status for a hardware port."
INDEX { rs232InSigPortIndex, rs232InSigName }
::= { rs232InSigTable 1 }

Rs232InSigEntry ::= SEQUENCE {
 rs232InSigPortIndex
 InterfaceIndex,
 rs232InSigName
 INTEGER,
 rs232InSigState
 INTEGER,
 rs232InSigChanges
 Counter32
}

rs232InSigPortIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of rs232PortIndex for the port to which
this entry belongs."
::= { rs232InSigEntry 1 }

rs232InSigName OBJECT-TYPE
SYNTAX INTEGER { rts(1), cts(2), dsr(3), dtr(4), ri(5),
 dcd(6), sq(7), srs(8), srts(9),
 scts(10), sdcd(11) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Identification of a hardware signal, as follows:

 rts Request to Send
 cts Clear to Send
 dsr Data Set Ready
 dtr Data Terminal Ready
 ri Ring Indicator
 dcd Received Line Signal Detector
 sq Signal Quality Detector
rs Data Signaling Rate Selector
srts Secondary Request to Send
scts Secondary Clear to Send
sdcd Secondary Received Line Signal Detector

REFERENCE
"EIA Standard RS-232-C, August 1969."
::= { rs232InSigEntry 2 }

rs232InSigState OBJECT-TYPE
SYNTAX INTEGER { none(1), on(2), off(3) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current signal state."
::= { rs232InSigEntry 3 }

rs232InSigChanges OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the signal has changed from
‘on’ to ‘off’ or from ‘off’ to ‘on’."
::= { rs232InSigEntry 4 }

-- Output Signal Table

rs232OutSigTable OBJECT-TYPE
SYNTAX SEQUENCE OF Rs232OutSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of port output control signal entries
implemented and visible to the software on the port,
and useful to monitor."
::= { rs232 6 }

rs232OutSigEntry OBJECT-TYPE
SYNTAX Rs232OutSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Output control signal status for a hardware port."
INDEX { rs232OutSigPortIndex, rs232OutSigName }
::= { rs232OutSigTable 1 }
Rs232OutSigEntry ::=
 SEQUENCE {
 rs232OutSigPortIndex
 InterfaceIndex,
 rs232OutSigName
 INTEGER,
 rs232OutSigState
 INTEGER,
 rs232OutSigChanges
 Counter32
 }

rs232OutSigPortIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of rs232PortIndex for the port to which
this entry belongs."
::= { rs232OutSigEntry 1 }

rs232OutSigName OBJECT-TYPE
SYNTAX INTEGER { rts(1), cts(2), dsr(3), dtr(4), ri(5),
 dcd(6), sq(7), srs(8), srts(9),
 scts(10), sdcd(11) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Identification of a hardware signal, as follows:

rts Request to Send
cts Clear to Send
dsr Data Set Ready
dtr Data Terminal Ready
ri Ring Indicator
dcd Received Line Signal Detector
sq Signal Quality Detector
srs Data Signaling Rate Selector
srts Secondary Request to Send
scts Secondary Clear to Send
sdcd Secondary Received Line Signal Detector
"
REFERENCE
"EIA Standard RS-232-C, August 1969."
::= { rs232OutSigEntry 2 }

rs232OutSigState OBJECT-TYPE
SYNTAX INTEGER { none(1), on(2), off(3) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current signal state."
 ::= { rs232OutSigEntry 3 }

rs232OutSigChanges OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the signal has changed from
'on' to 'off' or from 'off' to 'on'."
 ::= { rs232OutSigEntry 4 }

-- conformance information
rs232Conformance OBJECT IDENTIFIER ::= { rs232 7 }

rs232Groups OBJECT IDENTIFIER ::= { rs232Conformance 1 }
rs232Compliances OBJECT IDENTIFIER ::= { rs232Conformance 2 }

-- compliance statements
rs232Compliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMPv2 entities
 which have RS-232-like hardware interfaces."

MODULE -- this module
MANDATORY-GROUPS { rs232Group }

GROUP rs232AsyncGroup
DESCRIPTION
"The Asynch group is mandatory only for those
SNMPv2 entities which have asynchronous
interfaces Rs-232-like."

GROUP rs232SyncGroup
DESCRIPTION
"The Synch group is mandatory only for those
SNMPv2 entities which have synchronous
interfaces Rs-232-like."
 ::= { rs232Compliances 1 }
-- units of conformance

rs232Group OBJECT-GROUP
OBJECTS { rs232Number, rs232PortIndex, rs232PortType,
 rs232PortInSigNumber, rs232PortOutSigNumber,
 rs232PortInSpeed, rs232PortOutSpeed,
 rs232PortInFlowType, rs232PortOutFlowType,
 rs232InSigPortIndex, rs232InSigName,
 rs232InSigState, rs232InSigChanges,
 rs232OutSigPortIndex, rs232OutSigName,
 rs232OutSigState, rs232OutSigChanges }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to all RS-232-like interfaces."
::= { rs232Groups 1 }

rs232AsyncGroup OBJECT-GROUP
OBJECTS { rs232AsyncPortIndex, rs232AsyncPortBits,
 rs232AsyncPortStopBits, rs232AsyncPortParity,
 rs232AsyncPortAutobaud, rs232AsyncPortParityErrs,
 rs232AsyncPortFramingErrs, rs232AsyncPortOverrunErrs }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to asynchronous RS-232-like interfaces."
::= { rs232Groups 2 }

rs232SyncGroup OBJECT-GROUP
OBJECTS { rs232SyncPortIndex, rs232SyncPortClockSource,
 rs232SyncPortFrameCheckErrs,
 rs232SyncPortTransmitUnderrunErrs,
 rs232SyncPortReceiveOverrunErrs,
 rs232SyncPortInterruptedFrames,
 rs232SyncPortAbortedFrames }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to synchronous RS-232-like interfaces."
::= { rs232Groups 3 }

rs232SyncSDLCGroup OBJECT-GROUP
OBJECTS { rs232SyncPortRole,
 rs232SyncPortEncoding,
 rs232SyncPortRTSControl,
 rs232SyncPortRTSCTSDelay,
 rs232SyncPortMode,
 rs232SyncPortIdlePattern,
rs232SyncPortMinFlags }
STATUS current
DESCRIPTION "A collection of objects providing information applicable to synchronous RS-232-like interfaces running SDLC."
::= { rs232Groups 4 }

END

5. Acknowledgements

This memo was produced by the IETF Character MIB Working Group.

6. References

7. Security Considerations

Security issues are not discussed in this memo.

8. Author’s Address

Bob Stewart
Xyplex, Inc.
295 Foster Street
Littleton, MA 01460

Phone: 508-952-4816
Fax: 508-952-4887
EMail: rlstewart@eng.xyplex.com