[Docs] [txt|pdf|xml] [Tracker] [Email] [Diff1] [Diff2] [Nits]
Versions: 00 01 02 03 04 05 06 07 08 09 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82
draft-templin-intarea-6706bis
Network Working Group F. Templin, Ed.
Internet-Draft Boeing Research & Technology
Obsoletes: rfc6706 (if approved) August 26, 2014
Intended status: Standards Track
Expires: February 27, 2015
Transmission of IP Packets over AERO Links
draft-templin-aerolink-32.txt
Abstract
This document specifies the operation of IP over tunnel virtual links
using Asymmetric Extended Route Optimization (AERO). Nodes attached
to AERO links can exchange packets via trusted intermediate routers
that provide forwarding services to reach off-link destinations and
redirection services for route optimization. AERO provides an IPv6
link-local address format known as the AERO address that supports
operation of the IPv6 Neighbor Discovery (ND) protocol and links IPv6
ND to IP forwarding. Admission control and provisioning are
supported by the Dynamic Host Configuration Protocol for IPv6
(DHCPv6), and node mobility is naturally supported through dynamic
neighbor cache updates. Although DHCPv6 and IPv6 ND messaging is
used in the control plane, both IPv4 and IPv6 are supported in the
data plane.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on February 27, 2015.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
Templin Expires February 27, 2015 [Page 1]
Internet-Draft AERO August 2014
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Asymmetric Extended Route Optimization (AERO) . . . . . . . . 5
3.1. AERO Link Reference Model . . . . . . . . . . . . . . . . 6
3.2. AERO Node Types . . . . . . . . . . . . . . . . . . . . . 7
3.3. AERO Addresses . . . . . . . . . . . . . . . . . . . . . 8
3.4. AERO Interface Characteristics . . . . . . . . . . . . . 9
3.4.1. Coordination of Multiple Underlying Interfaces . . . 11
3.5. AERO Interface Neighbor Cache Maintenace . . . . . . . . 11
3.6. AERO Interface Sending Algorithm . . . . . . . . . . . . 13
3.7. AERO Interface Encapsulation, Re-encapsulation and
Decapsulation . . . . . . . . . . . . . . . . . . . . . . 14
3.8. AERO Interface Data Origin Authentication . . . . . . . . 16
3.9. AERO Interface MTU Considerations . . . . . . . . . . . . 16
3.10. AERO Router Discovery, Prefix Delegation and Address
Configuration . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1. AERO DHCPv6 Service Model . . . . . . . . . . . . . 18
3.10.2. AERO Client Behavior . . . . . . . . . . . . . . . . 19
3.10.3. AERO Server Behavior . . . . . . . . . . . . . . . . 20
3.11. AERO Relay/Server Routing System . . . . . . . . . . . . 23
3.12. AERO Redirection . . . . . . . . . . . . . . . . . . . . 23
3.12.1. Reference Operational Scenario . . . . . . . . . . . 23
3.12.2. Concept of Operations . . . . . . . . . . . . . . . 25
3.12.3. Message Format . . . . . . . . . . . . . . . . . . . 25
3.12.4. Sending Predirects . . . . . . . . . . . . . . . . . 26
3.12.5. Re-encapsulating and Relaying Predirects . . . . . . 27
3.12.6. Processing Predirects and Sending Redirects . . . . 28
3.12.7. Re-encapsulating and Relaying Redirects . . . . . . 30
3.12.8. Processing Redirects . . . . . . . . . . . . . . . . 30
3.12.9. Server-Oriented Redirection . . . . . . . . . . . . 31
3.13. Neighbor Unreachability Detection (NUD) . . . . . . . . . 31
3.14. Mobility Management . . . . . . . . . . . . . . . . . . . 32
3.14.1. Announcing Link-Layer Address Changes . . . . . . . 32
3.14.2. Bringing New Links Into Service . . . . . . . . . . 34
3.14.3. Removing Existing Links from Service . . . . . . . . 34
3.14.4. Moving to a New Server . . . . . . . . . . . . . . . 34
Templin Expires February 27, 2015 [Page 2]
Internet-Draft AERO August 2014
3.15. Encapsulation Protocol Version Considerations . . . . . . 35
3.16. Multicast Considerations . . . . . . . . . . . . . . . . 35
3.17. Operation on AERO Links Without DHCPv6 Services . . . . . 36
3.18. Operation on Server-less AERO Links . . . . . . . . . . . 36
4. Implementation Status . . . . . . . . . . . . . . . . . . . . 36
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36
6. Security Considerations . . . . . . . . . . . . . . . . . . . 36
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 37
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1. Normative References . . . . . . . . . . . . . . . . . . 38
8.2. Informative References . . . . . . . . . . . . . . . . . 39
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 41
1. Introduction
This document specifies the operation of IP over tunnel virtual links
using Asymmetric Extended Route Optimization (AERO). The AERO link
can be used for tunneling to neighboring nodes over either IPv6 or
IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
equivalent links for tunneling. Nodes attached to AERO links can
exchange packets via trusted intermediate routers that provide
forwarding services to reach off-link destinations and redirection
services for route optimization that addresses the requirements
outlined in [RFC5522].
AERO provides an IPv6 link-local address format known as the AERO
address that supports operation of the IPv6 Neighbor Discovery (ND)
[RFC4861] protocol and links IPv6 ND to IP forwarding. Admission
control and provisioning are supported by the Dynamic Host
Configuration Protocol for IPv6 (DHCPv6) [RFC3315], and node mobility
is naturally supported through dynamic neighbor cache updates.
Although DHCPv6 and IPv6 ND message signalling is used in the control
plane, either of IPv4 and IPv6 can be used in the data plane. The
remainder of this document presents the AERO specification.
2. Terminology
The terminology in the normative references applies; the following
terms are defined within the scope of this document:
AERO link
a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
configured over a node's attached IPv6 and/or IPv4 networks. All
nodes on the AERO link appear as single-hop neighbors from the
perspective of the virtual overlay.
AERO interface
a node's attachment to an AERO link.
Templin Expires February 27, 2015 [Page 3]
Internet-Draft AERO August 2014
AERO address
an IPv6 link-local address constructed as specified in Section 3.2
and applied to a Client's AERO interface.
AERO node
a node that is connected to an AERO link and that participates in
IPv6 ND over the link.
AERO Client ("Client")
a node that applies an AERO address to an AERO interface and
receives an IP prefix delegation.
AERO Server ("Server")
a node that configures an AERO interface to provide default
forwarding and DHCPv6 services for AERO Clients. The Server
applies the IPv6 link-local subnet router anycast address (fe80::)
to the AERO interface and also applies an administratively
assigned IPv6 link-local unicast address used for operation of the
IPv6 ND protocol.
AERO Relay ("Relay")
a node that configures an AERO interface to relay IP packets
between nodes on the same AERO link and/or forward IP packets
between the AERO link and the native Internetwork. The Relay
applies an administratively assigned IPv6 link-local unicast
address to the AERO interface the same as for a Server.
ingress tunnel endpoint (ITE)
an AERO interface endpoint that injects tunneled packets into an
AERO link.
egress tunnel endpoint (ETE)
an AERO interface endpoint that receives tunneled packets from an
AERO link.
underlying network
a connected IPv6 or IPv4 network routing region over which the
tunnel virtual overlay is configured. A typical example is an
enterprise network.
underlying interface
an AERO node's interface point of attachment to an underlying
network.
link-layer address
an IP address assigned to an AERO node's underlying interface.
When UDP encapsulation is used, the UDP port number is also
considered as part of the link-layer address. Link-layer
Templin Expires February 27, 2015 [Page 4]
Internet-Draft AERO August 2014
addresses are used as the encapsulation header source and
destination addresses.
network layer address
the source or destination address of the encapsulated IP packet.
end user network (EUN)
an internal virtual or external edge IP network that an AERO
Client connects to the rest of the network via the AERO interface.
AERO Service Prefix (ASP)
an IP prefix associated with the AERO link and from which AERO
Client Prefixes (ACPs) are derived (for example, the IPv6 ACP
2001:db8:1:2::/64 is derived from the IPv6 ASP 2001:db8::/32).
AERO Client Prefix (ACP)
a more-specific IP prefix taken from an ASP and delegated to a
Client.
Throughout the document, the simple terms "Client", "Server" and
"Relay" refer to "AERO Client", "AERO Server" and "AERO Relay",
respectively. Capitalization is used to distinguish these terms from
DHCPv6 client/server/relay.
Throughout the document, it is said that an address is "applied" to
an AERO interface since the address need not always be "assigned" to
the interface in the traditional sense. However, the address must at
least be bound to the interface in some fashion to support the
operation of DHCPv6 and the IPv6 ND protocol.
The terminology of [RFC4861] (including the names of node variables
and protocol constants) applies to this document. Also throughout
the document, the term "IP" is used to generically refer to either
Internet Protocol version (i.e., IPv4 or IPv6).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
3. Asymmetric Extended Route Optimization (AERO)
The following sections specify the operation of IP over Asymmetric
Extended Route Optimization (AERO) links:
Templin Expires February 27, 2015 [Page 5]
Internet-Draft AERO August 2014
3.1. AERO Link Reference Model
.-(::::::::)
.-(:::: IP ::::)-.
(:: Internetwork ::)
`-(::::::::::::)-'
`-(::::::)-'
|
+--------------+ +-------+------+ +--------------+
|AERO Server S1| | AERO Relay R | |AERO Server S2|
| (default->R) | |(C->S1; D->S2)| | (default->R) |
| Nbr: A | +-------+------+ | Nbr: B |
+-------+------+ | +------+-------+
| | |
X---+---+-------------------+------------------+---+---X
| AERO Link |
+-----+--------+ +--------+-----+
|AERO Client A | |AERO Client B |
| default->S1 | | default->S2 |
+--------------+ +--------------+
.-. .-.
,-( _)-. ,-( _)-.
.-(_ IP )-. .-(_ IP )-.
(__ EUN ) (__ EUN )
`-(______)-' `-(______)-'
| |
+--------+ +--------+
| Host C | | Host D |
+--------+ +--------+
Figure 1: AERO Link Reference Model
Figure 1 above presents the AERO link reference model. In this
model:
o Relay R act as a default router for its associated Servers S1 and
S2, and connects the AERO link to the rest of the IP Internetwork
o Servers S1 and S2 associate with Relay R and also act as default
routers for their associated Clients A and B.
o Clients A and B associate with Servers S1 and S2, respectively and
also act as default routers for their associated EUNs
o Hosts C and D attach to the EUNs served by Clients A and B,
respectively
Templin Expires February 27, 2015 [Page 6]
Internet-Draft AERO August 2014
In operational practice, there may be many additional Relays, Servers
and Clients.
3.2. AERO Node Types
AERO Relays provide default forwarding services to AERO Servers.
Relays forward packets between Servers connected to the same AERO
link and also forward packets between the AERO link and the native
Internetwork. Relays present the AERO link to the native
Internetwork as a set of one or more ASPs. Each Relay advertises the
ASPs for the AERO link into the native IP Internetwork and serves as
a gateway between the AERO link and the Internetwork. AERO Relays
maintain an AERO interface neighbor cache entry for each AERO Server,
and maintain an IP forwarding table entry for each AERO Client.
AERO Servers provide default forwarding services to AERO Clients.
Each Server also peers with each Relay in a dynamic routing protocol
session to advertise its list of associated Clients. Servers
configure a DHCPv6 server function to facilitate Prefix Delegation
(PD) exchanges with Clients. Each delegated prefix becomes an AERO
Client Prefix (ACP) taken from an ASP. Servers forward packets
between Clients and Relays, as well as between Clients and other
Clients associated with the same Server. AERO Servers maintain an
AERO interface neighbor cache entry for each AERO Relay. They also
maintain both a neighbor cache entry and an IP forwarding table entry
for each of their associated Clients.
AERO Clients act as requesting routers to receive ACPs through DHCPv6
PD exchanges with AERO Servers over the AERO link. (Each Client MAY
associate with a single Server or with multiple Servers, e.g., for
fault tolerance and/or load balancing.) Each IPv6 Client receives at
least a /64 IPv6 ACP, and may receive even shorter prefixes.
Similarly, each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a
singleton IPv4 address), and may receive even shorter prefixes. AERO
Clients maintain an AERO interface neighbor cache entry for each of
their associated Servers as well as for each of their correspondent
Clients.
AERO Clients that act as routers sub-delegate portions of their ACPs
to links on EUNs. End system applications on Clients that act as
routers bind to EUN interfaces (i.e., and not the AERO interface).
AERO Clients that act as ordinary hosts assign one or more IP
addresses from their ACPs to the AERO interface but DO NOT assign the
ACP itself to the AERO interface. Instead, the Client assigns the
ACP to a "black hole" route so that unused portions of the prefix are
nullified. End system applications on Clients that act as hosts bind
directly to the AERO interface.
Templin Expires February 27, 2015 [Page 7]
Internet-Draft AERO August 2014
3.3. AERO Addresses
An AERO address is an IPv6 link-local address with an embedded ACP
and applied to a Client's AERO interface. The AERO address is formed
as follows:
fe80::[ACP]
For IPv6, the AERO address begins with the prefix fe80::/64 and
includes in its interface identifier the base prefix taken from the
Client's IPv6 ACP. The base prefix is determined by masking the ACP
with the prefix length. For example, if the AERO Client receives the
IPv6 ACP:
2001:db8:1000:2000::/56
it constructs its AERO address as:
fe80::2001:db8:1000:2000
For IPv4, the AERO address is formed from the lower 64 bits of an
IPv4-mapped IPv6 address [RFC4291] that includes the base prefix
taken from the Client's IPv4 ACP. For example, if the AERO Client
receives the IPv4 ACP:
192.0.2.32/28
it constructs its AERO address as:
fe80::FFFF:192.0.2.32
The AERO address remains stable as the Client moves between
topological locations, i.e., even if its link-layer addresses change.
NOTE: In some cases, prospective neighbors may not have a priori
knowledge of the Client's ACP length and may therefore send initial
IPv6 ND messages with an AERO destination address that matches the
ACP but does not correspond to the base prefix. In that case, the
Client MUST accept the address as equivalent to the base address, but
then use the base address as the source address of any IPv6 ND
message replies. For example, if the Client receives the IPv6 ACP
2001:db8:1000:2000::/56 then subsequently receives an IPv6 ND message
with destination address fe80::2001:db8:1000:2001, it accepts the
message but uses fe80::2001:db8:1000:2000 as the source address of
any IPv6 ND replies.
Templin Expires February 27, 2015 [Page 8]
Internet-Draft AERO August 2014
3.4. AERO Interface Characteristics
AERO interfaces use IP-in-IPv6 encapsulation [RFC2473] to exchange
tunneled packets with AERO neighbors attached to an underlying IPv6
network, and use IP-in-IPv4 encapsulation [RFC2003][RFC4213] to
exchange tunneled packets with AERO neighbors attached to an
underlying IPv4 network. AERO interfaces can also coordinate secured
tunnel types such as IPsec [RFC4301] or TLS [RFC5246]. When Network
Address Translator (NAT) traversal and/or filtering middlebox
traversal may be necessary, a UDP header is further inserted
immediately above the IP encapsulation header.
AERO interfaces maintain a neighbor cache, and AERO Clients and
Servers use an adaptation of standard unicast IPv6 ND messaging.
AERO interfaces use unicast Neighbor Solicitation (NS), Neighbor
Advertisement (NA), Router Solicitation (RS) and Router Advertisement
(RA) messages the same as for any IPv6 link. AERO interfaces use two
redirection message types -- the first known as a Predirect message
and the second being the standard Redirect message (see Section 3.9).
AERO links further use link-local-only addressing; hence, AERO nodes
ignore any Prefix Information Options (PIOs) they may receive in RA
messages.
AERO interface ND messages include one or more Target Link-Layer
Address Options (TLLAOs) formatted as shown in Figure 2:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length = 3 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link ID | Preference | UDP Port Number (or 0) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-- --+
| |
+-- IP Address --+
| |
+-- --+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: AERO Target Link-Layer Address Option (TLLAO) Format
In this format, Link ID is an integer value between 0 and 255
corresponding to an underlying interface of the target node, and
Preference is an integer value between 0 and 255 indicating the
Templin Expires February 27, 2015 [Page 9]
Internet-Draft AERO August 2014
node's preference for this underlying interface (with 255 being the
highest preference, 1 being the lowest and 0 meaning "link
disabled"). UDP Port Number and IP Address are set to the addresses
used by the target node when it sends encapsulated packets over the
underlying interface. When no UDP encapsulation is used, UDP Port
Number is set to 0. When the encapsulation IP address family is
IPv4, IP Address is formed as an IPv4-mapped IPv6 address [RFC4291].
When a Relay enables an AERO interface, it applies an
administratively assigned link-local address fe80::ID to the
interface for communicating with Servers on the link. Each fe80::ID
address MUST be unique among all Relays and Servers on the link, and
MUST NOT collide with any potential AERO addresses, e.g., the
addresses could be assigned as fe80::1, fe80::2, fe80::3, etc. The
Relay also maintains an IP forwarding table entry for each Client-
Server association and maintains a neighbor cache entry for each
Server on the link. Relays do not require the use of IPv6 ND
messaging for reachability determination since Relays and Servers
engage in a dynamic routing protocol over the AERO interface. At a
minimum, however, Relays respond to NS messages by returning an NA.
When a Server enables an AERO interface, it applies the address
fe80:: to the interface as a link-local Subnet Router Anycast
address, and also applies an administratively assigned link-local
address fe80::ID to support the operation of DHCPv6 and the IPv6 ND
protocol as well as to communicate with Relays on the link. The
Server configures a DHCPv6 server function to facilitate DHCPv6 PD
exchanges with AERO Clients. The Server also maintains a neighbor
cache entry for each Relay on the link, and manages per-Client
neighbor cache entries and IP forwarding table entries based on
DHCPv6 exchanges. When the Server receives an NS/RS message on the
AERO interface it returns an NA/RA message but does not update the
neighbor cache. Servers also engage in a dynamic routing protocol
with all Relays on the link. Finally, the Server provides a simple
conduit between Clients and Relays, or between Clients and other
Clients. Therefore, packets enter the Server's AERO interface from
the link layer and are forwarded back out the link layer without ever
leaving the AERO interface and therefore without ever disturbing the
network layer.
When a Client enables an AERO interface, it invokes DHCPv6 PD to
receive an ACP from an AERO Server. Next, it applies the
corresponding AERO address to the AERO interface and creates a
neighbor cache entry for the Server, i.e., the PD exchange bootstraps
the provisioning of a unique link-local address. The Client
maintains a neighbor cache entry for each of its Servers and each of
its active peer Clients. When the Client receives Redirect/Predirect
messages on the AERO interface it updates or creates neighbor cache
Templin Expires February 27, 2015 [Page 10]
Internet-Draft AERO August 2014
entries, including link-layer address information. Unsolicited NA
messages update the cached link-layer addresses for the neighbor
Client (e.g., following a link-layer address change due to node
mobility) but do not create new neighbor cache entries. NS/NA
messages used for Neighbor Unreachability Detection (NUD) update
timers in existing neighbor cache entires but do not update link-
layer addresses nor create new neighbor cache entries. Finally, the
Client need not maintain any IP forwarding table entries for
neighboring Clients. Instead, it can set a single "route-to-
interface" default route in the IP forwarding table pointing to the
AERO interface, and all forwarding decisions can be made within the
AERO interface based on neighbor cache entries.
3.4.1. Coordination of Multiple Underlying Interfaces
AERO interfaces may be configured over multiple underlying
interfaces. For example, common mobile handheld devices have both
wireless local area network ("WLAN") and cellular wireless links.
These links are typically used "one at a time" with low-cost WLAN
preferred and highly-available cellular wireless as a standby. In a
more complex example, aircraft frequently have many wireless data
link types (e.g. satellite-based, terrestrial, air-to-air
directional, etc.) with diverse performance and cost properties.
If a Client's multiple underlying interfaces are used "one at a time"
(i.e., all other interfaces are in standby mode while one interface
is active), then Redirect, Predirect and unsolicited NA messages
include only a single TLLAO with Link ID set to a constant value.
If the Client has multiple active underlying interfaces, then from
the perspective of IPv6 ND it would appear to have a single link-
local address with multiple link-layer addresses. In that case,
Redirect, Predirect and unsolicited NA messages MAY include multiple
TLLAOs -- each with a different Link ID that corresponds to a
specific underlying interface of the Client.
3.5. AERO Interface Neighbor Cache Maintenace
Each AERO interface maintains a conceptual neighbor cache that
includes an entry for each neighbor it communicates with on the AERO
link, the same as for any IPv6 interface [RFC4861]. AERO interface
neighbor cache entires are said to be one of "permanent", "static" or
"dynamic".
Permanent neighbor cache entries are created through explicit
administrative action; they have no timeout values and remain in
place until explicitly deleted. AERO Relays maintain a permanent
Templin Expires February 27, 2015 [Page 11]
Internet-Draft AERO August 2014
neighbor cache entry for each Server on the link, and AERO Servers
maintain a permanent neighbor cache entry for each Relay on the link.
Static neighbor cache entries are created though DHCPv6 PD exchanges
and remain in place for durations bounded by prefix lifetimes. AERO
Servers maintain a static neighbor cache entry for each of their
associated Clients, and AERO Clients maintain a static neighbor cache
for each of their associated Servers. When an AERO Server sends a
DHCPv6 Reply message response to a Client's DHCPv6 Solicit or Renew
message, it creates or updates a static neighbor cache entry based on
the Client's AERO address as the network-layer address, the prefix
lifetime as the neighbor cache entry lifetime, the Client's
encapsulation IP address and UDP port number as the link-layer
address and the prefix length as the length to apply to the AERO
address. When an AERO Client receives a DHCPv6 Reply message from a
Server, it creates or updates a static neighbor cache entry based on
the Reply message link-local source address as the network-layer
address, the prefix lifetime as the neighbor cache entry lifetime,
and the encapsulation IP source address and UDP source port number as
the link-layer address.
Dynamic neighbor cache entries are created based on receipt of an
IPv6 ND message, and are garbage-collected if not used within a short
timescale. AERO Clients maintain dynamic neighbor cache entries for
each of their active correspondent Clients with lifetimes based on
IPv6 ND messaging constants. When an AERO Client receives a valid
Predirect message it creates or updates a dynamic neighbor cache
entry for the Predirect target network-layer and link-layer addresses
plus prefix length. The node then sets an "AcceptTime" variable for
the neighbor and uses this value to determine whether packets
received from the predirected neighbor can be accepted. When an AERO
Client receives a valid Redirect message it creates or updates a
dynamic neighbor cache entry for the Redirect target network-layer
and link-layer addresses plus prefix length. The Client then sets a
"ForwardTime" variable for the neighbor and uses this value to
determine whether packets can be sent directly to the redirected
neighbor. The Client also maintains a "MaxRetry" variable to limit
the number of keepalives sent when a neighbor may have gone
unreachable.
For dynamic neighbor cache entries, when an AERO Client receives a
valid NS message it (re)sets AcceptTime for the neighbor to
ACCEPT_TIME. When an AERO Client receives a valid solicited NA
message, it (re)sets ForwardTime for the neighbor to FORWARD_TIME and
sets MaxRetry to MAX_RETRY. When an AERO Client receives a valid
unsolicited NA message, it updates the neighbor's link-layer
addresses but DOES NOT reset AcceptTime, ForwardTime or MaxRetry.
Templin Expires February 27, 2015 [Page 12]
Internet-Draft AERO August 2014
It is RECOMMENDED that FORWARD_TIME be set to the default constant
value 30 seconds to match the default REACHABLE_TIME value specified
for IPv6 ND [RFC4861].
It is RECOMMENDED that ACCEPT_TIME be set to the default constant
value 40 seconds to allow a 10 second window so that the AERO
redirection procedure can converge before AcceptTime decrements below
FORWARD_TIME.
It is RECOMMENDED that MAX_RETRY be set to 3 the same as described
for IPv6 ND address resolution in Section 7.3.3 of [RFC4861].
Different values for FORWARD_TIME, ACCEPT_TIME, and MAX_RETRY MAY be
administratively set, if necessary, to better match the AERO link's
performance characteristics; however, if different values are chosen,
all nodes on the link MUST consistently configure the same values.
Most importantly, ACCEPT_TIME SHOULD be set to a value that is
sufficiently longer than FORWARD_TIME to allow the AERO redirection
procedure to converge.
3.6. AERO Interface Sending Algorithm
IP packets enter a node's AERO interface either from the network
layer (i.e., from a local application or the IP forwarding system),
or from the link-layer (i.e., from the AERO tunnel virtual link).
Packets that enter the AERO interface from the network layer are
encapsulated and admitted into the AERO link (i.e., they are
tunnelled to an AERO interface neighbor). Packets that enter the
AERO interface from the link layer are either re-admitted into the
AERO link or delivered to the network layer where they are subject to
either local delivery or IP forwarding. Since each AERO node has
only partial information about neighbors on the link, AERO interfaces
may forward packets with link-local destination addresses at a layer
below the network layer. This means that AERO nodes act as both IP
routers and link-layer "bridges". AERO interface sending
considerations for Clients, Servers and Relays are given below.
When an IP packet enters a Client's AERO interface from the network
layer, if the destination is covered by an ASP the Client searches
for a dynamic neighbor cache entry with a non-zero ForwardTime and an
AERO address that matches the packet's destination address. (The
destination address may be either an address covered by the
neighbor's ACP or the (link-local) AERO address itself.) If there is
a match, the Client uses a link-layer address in the entry as the
link-layer address for encapsulation then admits the packet into the
AERO link. If there is no match, the Client instead uses the link-
layer address of a neighboring Server as the link-layer address for
encapsulation.
Templin Expires February 27, 2015 [Page 13]
Internet-Draft AERO August 2014
When an IP packet enters a Server's AERO interface from the link
layer, if the destination is covered by an ASP the Server searches
for a static neighbor cache entry with an AERO address that matches
the packet's destination address. (The destination address may be
either an address covered by the neighbor's ACP or the AERO address
itself.) If there is a match, the Server uses a link-layer address
in the entry as the link-layer address for encapsulation and re-
admits the packet into the AERO link. If there is no match, the
Server instead uses the link-layer address in any permanent neighbor
cache entry as the link-layer address for encapsulation. When a
Server receives a packet from a Relay, the Server MUST NOT loop the
packet back to the same or a different Relay.
When an IP packet enters a Relay's AERO interface from the network
layer, the Relay searches its IP forwarding table for an entry that
is covered by an ASP and also matches the destination. If there is a
match, the Relay uses the link-layer address in the neighbor cache
entry for the next-hop Server as the link-layer address for
encapsulation and admits the packet into the AERO link. When an IP
packet enters a Relay's AERO interface from the link-layer, if the
destination is not a link-local address and is not covered by an ASP
the Relay removes the packet from the AERO interface and uses IP
forwarding to forward the packet to the Internetwork. If the
destination address is covered by an ASP, and there is a more-
specific IP forwarding table entry that matches the destination, the
Relay uses the link-layer address in the neighbor cache entry for the
next-hop Server as the link-layer address for encapsulation and re-
admits the packet into the AERO link. If there is no more-specific
entry, the Relay instead drops the packet. When an Relay receives a
packet from a Server, the Relay MUST NOT forward the packet back to
the same Server.
Note that in the above that the link-layer address for encapsulation
may be through consulting either the neighbor cache or the IP
forwarding table. IP forwarding is therefore linked to IPv6 ND via
the AERO address.
When an AERO node re-admits a packet into the AERO link, the node
MUST NOT decrement the network layer TTL/Hop-count.
3.7. AERO Interface Encapsulation, Re-encapsulation and Decapsulation
AERO interfaces encapsulate IP packets according to whether they are
entering the AERO interface from the network layer or if they are
being re-admitted into the same AERO link they arrived on. This
latter form of encapsulation is known as "re-encapsulation".
Templin Expires February 27, 2015 [Page 14]
Internet-Draft AERO August 2014
AERO interfaces encapsulate packets per the specifications in
[RFC2003][RFC2473][RFC4213][RFC4301][RFC5246] (etc.) except that the
interface copies the "TTL/Hop Limit", "Type of Service/Traffic Class"
and "Congestion Experienced" values in the packet's IP header into
the corresponding fields in the encapsulation header. For packets
undergoing re-encapsulation, the AERO interface instead copies the
"TTL/Hop Limit", "Type of Service/Traffic Class" and "Congestion
Experienced" values in the original encapsulation header into the
corresponding fields in the new encapsulation header (i.e., the
values are transferred between encapsulation headers and *not* copied
from the encapsulated packet's network-layer header).
When AERO UDP encapsulation is used, the AERO interface encapsulates
the packet per the above tunneling specifications except that it
inserts a UDP header between the encapsulation header and the
packet's IP header. The AERO interface sets the UDP source port to a
constant value that it will use in each successive packet it sends,
sets the UDP checksum field to zero (see: [RFC6935][RFC6936]) and
sets the UDP length field to the length of the IP packet plus 8 bytes
for the UDP header itself. For packets sent via a Server, the AERO
interface sets the UDP destination port to 8060 (i.e., the IANA-
registered port number for AERO) when AERO-only encapsulation is
used. For packets sent to a neighboring Client, the AERO interface
sets the UDP destination port to the port value stored in the
neighbor cache entry for this neighbor.
The AERO interface next sets the IP protocol number in the
encapsulation header to the appropriate value for the first protocol
layer within the encapsulation (e.g., IPv4, IPv6, UDP, IPsec, etc.).
When IPv6 is used as the encapsulation protocol, the interface then
sets the flow label value in the encapsulation header the same as
described in [RFC6438]. When IPv4 is used as the encapsulation
protocol, the AERO interface sets the DF bit as discussed in
Section 3.8.
AERO interfaces decapsulate packets destined either to the node
itself or to a destination reached via an interface other than the
AERO interface the packet was received on. When AERO UDP
encapsulation is used (i.e., when a UDP header with destination port
8060 is present) the interface examines the first octet of the
encapsulated packet. The packet is accepted if the most significant
four bits of the first octet encode the value '0110' (i.e., the
version number value for IPv6) or the value '0100' (i.e., the version
number value for IPv4). Otherwise, the packet is accepted if the
first octet encodes a valid IP protocol number per the IANA
"protocol-numbers" registry that matches a supported encapsulation
type. Otherwise, the packet is discarded.
Templin Expires February 27, 2015 [Page 15]
Internet-Draft AERO August 2014
Further decapsulation then proceeds according to the appropriate
tunnel type per the above specifications.
3.8. AERO Interface Data Origin Authentication
AERO nodes employ simple data origin authentication procedures for
encapsulated packets they receive from other nodes on the AERO link.
In particular, AERO Clients accept encapsulated packets with a link-
layer source address belonging to one of their current AERO Servers,
and AERO Servers accept encapsulated packets with a link-layer source
address belonging to one of their current Clients.
AERO Clients and Servers also accept encapsulated packets if there is
a dynamic neighbor cache entry with an AERO address that matches the
packet's network-layer source address prefix, with a link-layer
address that matches the packet's link-layer source address, and
AcceptTime is non-zero.
An AERO Server also accepts packets with a link-layer source address
that matches one of its associated Relays, and an AERO Relay accepts
packets with a source address that matches one of its associated
Servers.
Finally, AERO Servers accept DHCPv6 messages even if the link-layer
source address does not belong to one of their current Clients. The
DHCPv6 server will authenticate the message and (assuming
authentication succeeds) create or update a static neighbor cache
entry for the source Client.
Note that this simple data origin authentication only applies to
environments in which link-layer addresses cannot be spoofed.
Additional security mitigations may be necessary in other
environments.
3.9. AERO Interface MTU Considerations
The AERO link Maximum Transmission Unit (MTU) is 64KB minus the
encapsulation overhead for IPv4 as the link-layer [RFC0791] and 4GB
minus the encapsulation overhead for IPv6 as the link layer
[RFC2675]. This is the most that IPv4 and IPv6 (respectively) can
convey within the constraints of protocol constants, but actual sizes
available for tunneling will frequently be much smaller.
The base tunneling specifications for IPv4 and IPv6 typically set a
static MTU on the tunnel interface to 1500 bytes minus the
encapsulation overhead or smaller still if the tunnel is likely to
incur additional encapsulations on the path. This can result in path
MTU related black holes when packets that are too large to be
Templin Expires February 27, 2015 [Page 16]
Internet-Draft AERO August 2014
accommodated over the AERO link are dropped, but the resulting ICMP
Packet Too Big (PTB) messages are lost on the return path. As a
result, AERO nodes use the following MTU mitigations to accommodate
larger packets.
AERO nodes set their AERO interface MTU to the larger of the
underlying interface MTU minus the encapsulation overhead, and 1500
bytes. (If there are multiple underlying interfaces, the node sets
the AERO interface MTU according to the largest underlying interface
MTU, or 64KB /4G minus the encapsulation overhead if the largest MTU
cannot be determined.) AERO nodes optionally cache other per-
neighbor MTU values in the underlying IP path MTU discovery cache
initialized to the underlying interface MTU.
AERO nodes admit packets that are no larger than 1280 bytes minus the
encapsulation overhead (*) as well as packets that are larger than
1500 bytes into the tunnel without fragmentation, i.e., as long as
they are no larger than the AERO interface MTU before encapsulation
and also no larger than the cached per-neighbor MTU following
encapsulation. For IPv4, the node sets the "Don't Fragment" (DF) bit
to 0 for packets no larger than 1280 bytes minus the encapsulation
overhead (*) and sets the DF bit to 1 for packets larger than 1500
bytes. If a large packet is lost in the path, the node may
optionally cache the MTU reported in the resulting PTB message or may
ignore the message, e.g., if there is a possibility that the message
is spurious.
For packets destined to an AERO node that are larger than 1280 bytes
minus the encapsulation overhead (*) but no larger than 1500 bytes,
the node uses IP fragmentation to fragment the encapsulated packet
into two pieces (where the first fragment contains 1024 bytes of the
original IP packet) then admits the fragments into the tunnel. If
the link-layer protocol is IPv4, the node admits each fragment into
the tunnel with DF set to 0 and subject to rate limiting to avoid
reassembly errors [RFC4963][RFC6864]. For both IPv4 and IPv6, the
node also sends a 1500 byte probe message (**) to the neighbor,
subject to rate limiting.
To construct a probe, the node prepares an NS message with a Nonce
option plus trailing padding octets added to a length of 1500 bytes
without including the length of the padding in the IPv6 Payload
Length field. The node then encapsulates the NS in the encapsulation
headers (while including the length of the padding in the
encapsulation header length fields), sets DF to 1 (for IPv4) and
sends the padded NS message to the neighbor. If the neighbor returns
an NA message with a correct Nonce value, the node may then send
whole packets within this size range and (for IPv4) relax the rate
limiting requirement. (Note that the trailing padding SHOULD NOT be
Templin Expires February 27, 2015 [Page 17]
Internet-Draft AERO August 2014
included within the Nonce option itself but rather as padding beyond
the last option in the NS message; otherwise, the (large) Nonce
option would be echoed back in the solicited NA message and may be
lost at a link with a small MTU along the reverse path.)
AERO nodes MUST be capable of reassembling packets up to 1500 bytes
plus the encapsulation overhead length. It is therefore RECOMMENDED
that AERO nodes be capable of reassembling at least 2KB.
(*) Note that if it is known without probing that the minimum Path
MTU to an AERO node is MINMTU bytes (where 1280 < MINMTU < 1500) then
MINMTU can be used instead of 1280 in the fragmentation threshold
considerations listed above.
(**) It is RECOMMENDED that no probes smaller than 1500 bytes be used
for MTU probing purposes, since smaller probes may be fragmented if
there is a nested tunnel somewhere on the path to the neighbor.
Probe sizes larger than 1500 bytes MAY be used, but may be
unnecessary since original sources are expected to implement
[RFC4821] when sending large packets.
3.10. AERO Router Discovery, Prefix Delegation and Address
Configuration
3.10.1. AERO DHCPv6 Service Model
Each AERO Server configures a DHCPv6 server function to facilitate PD
requests from Clients. Each Server is pre-configured with an
identical list of ACP-to-Client ID mappings for all Clients enrolled
in the AERO system, as well as any information necessary to
authenticate Clients. The configuration information is maintained by
a central administrative authority for the AERO link and securely
propagated to all Servers whenever a new Client is enrolled or an
existing Client is withdrawn.
With these identical configurations, each Server can function
independently of all other Servers, including the maintenance of
active leases. Therefore, no Server-to-Server DHCPv6 state
synchronization is necessary, and Clients can optionally hold
separate leases for the same ACP from multiple Servers.
In this way, Clients can easily associate with multiple Servers, and
can receive new leases from new Servers before deprecating leases
held through old Servers. This enables a graceful "make-before-
break" capability.
Templin Expires February 27, 2015 [Page 18]
Internet-Draft AERO August 2014
3.10.2. AERO Client Behavior
AERO Clients discover the link-layer addresses of AERO Servers via
static configuration, or through an automated means such as DNS name
resolution. In the absence of other information, the Client resolves
the Fully-Qualified Domain Name (FQDN) "linkupnetworks.[domainname]"
where "linkupnetworks" is a constant text string and "[domainname]"
is the connection-specific DNS suffix for the Client's underlying
network connection (e.g., "example.com"). After discovering the
link-layer addresses, the Client associates with one or more of the
corresponding Servers.
To associate with a Server, the Client acts as a requesting router to
request an ACP through a DHCPv6 PD two-message
exchange[RFC3315][RFC3633] in which the Solicit message uses the IPv6
"unspecified" address (i.e., "::") as the IPv6 source address,
'All_DHCP_Relay_Agents_and_Servers' as the IPv6 destination address
and the link-layer address of the Server as the link-layer
destination address. The Client includes a Rapid Commit option as
well as a Client Identifier option with a DHCP Unique Identifier
(DUID), plus any necessary authentication options to identify itself
to the DHCPv6 server. The Client also includes a Client Link Layer
Address Option (CLLAO) [RFC6939] with the format shown in Figure 3
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OPTION_CLIENT_LINKLAYER_ADDR | option-length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| link-layer type (16 bits) | Link ID | Preference |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: AERO Client Link-Layer Address Option (CLLAO) Format
The Client sets the CLLAO 'option-length' field to 4 and sets the
'link-layer type' field to TBD1 (see: IANA Considerations), then
includes appropriate Link ID and Preference values for the underlying
interface over which the Solicit will be issued (note that these are
the same values that would be included in a TLLAO as shown in
Figure 2). If the Client is pre-provisioned with an ACP associated
with the AERO service, it MAY also include the ACP in the Solicit
message Identity Association (IA) option to indicate its preferred
ACP to the DHCPv6 server. The Client then sends the encapsulated
DHCPv6 request via the underlying interface.
When the Client receives its ACP and the set of ASPs via a DHCPv6
Reply from the AERO Server, it creates a static neighbor cache entry
with the Server's link-local address (i.e., fe80::ID) as the network-
Templin Expires February 27, 2015 [Page 19]
Internet-Draft AERO August 2014
layer address and the Server's encapsulation address as the link-
layer address. The Client then records the lifetime for the ACP in
the neighbor cache entry and marks the neighbor cache entry as
"default", i.e., the Client considers the Server as a default router.
If the Reply message contains a Vendor-Specific Information Option
(see: Section 3.10.3) the Client also caches each ASP in the option.
The Client then applies the AERO address to the AERO interface and
sub-delegates the ACP to nodes and links within its attached EUNs
(the AERO address thereafter remains stable as the Client moves).
The Client also assigns a default IP route to the AERO interface as a
route-to-interface, i.e., with no explicit next-hop. The next hop
will then be determined after a packet has been submitted to the AERO
interface by inspecting the neighbor cache (see above).
The Client subsequently renews its ACP delegation through each of its
Servers by performing DHCPv6 Renew/Reply exchanges with its AERO
address as the IPv6 source address,
'All_DHCP_Relay_Agents_and_Servers' as the IPv6 destination address,
the link-layer address of a Server as the link-layer destination
address and the same Client identifier, authentication options and
CLLAO option as was used in the initial PD request.
Since the Client's AERO address is configured from the unique ACP
delegation it receives, there is no need for Duplicate Address
Detection (DAD) on AERO links. Other nodes maliciously attempting to
hijack an authorized Client's AERO address will be denied access to
the network by the DHCPv6 server due to an unacceptable link-layer
address and/or security parameters (see: Security Considerations).
AERO Clients ignore the IP address and UDP port number in any S/TLLAO
options in ND messages they receive directly from another AERO
Client, but examine the Link ID and Preference values to match the
message with the correct link-layer address information.
When a source Client forwards a packet to a prospective destination
Client (i.e., one for which the packet's destination address is
covered by an ASP), the source Client initiates an AERO route
optimization procedure as specified in Section 3.12.
3.10.3. AERO Server Behavior
AERO Servers configure a DHCPv6 server function on their AERO links.
AERO Servers arrange to add their encapsulation layer IP addresses
(i.e., their link-layer addresses) to the DNS resource records for
the FQDN "linkupnetworks.[domainname]" before entering service.
Templin Expires February 27, 2015 [Page 20]
Internet-Draft AERO August 2014
When an AERO Server receives a prospective Client's DHCPv6 PD Solicit
message, it first authenticates the message. If authentication
succeeds, the Server determines the correct ACP to delegate to the
Client by matching the Client's DUID within an online directory
service (e.g., LDAP). The Server then delegates the ACP and creates
a static neighbor cache entry for the Client's AERO address with
lifetime set to no more than the lease lifetime and the Client's
link-layer address as the link-layer address for the Link ID
specified in the CLLAO option. The Server then creates an IP
forwarding table entry so that the inter-Server/Relay routing system
will propagate the ACP to all Relays (see: Section 3.11). Finally,
the Server sends a DHCPv6 Reply message to the Client while using
fe80::ID as the IPv6 source address, the Client's AERO address as the
IPv6 destination address, and the Client's link-layer address as the
destination link-layer address. The Server also includes a Server
Unicast option with server-address set to fe80::ID so that all future
Client/Server transactions will be link-local-only unicast over the
AERO link.
When the Server sends the DHCPv6 Reply message, it also includes a
DHCPv6 Vendor-Specific Information Option with 'enterprise-number'
set to "TBD2" (see: IANA Considerations). The option is formatted as
shown in[RFC3315] and with the AERO enterprise-specific format shown
in Figure 4:
Templin Expires February 27, 2015 [Page 21]
Internet-Draft AERO August 2014
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OPTION_VENDOR_OPTS | option-len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| enterprise-number ("TBD2") |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ ASP (1) +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ ASP (2) +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ ASP (3) +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. (etc.) .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: AERO Vendor-Specific Information Option
Per Figure 4, the option includes one or more ASP. The ASP field
contains the IP prefix as it would appear in the interface identifier
portion of the corresponding AERO address (see: Section 3.3). For
IPv6, valid values for the Prefix Length field are 0 through 64; for
IPv4, valid values are 0 through 32.
After the initial Solicit/Reply exchange, the AERO Server maintains
the neighbor cache entry for the Client as long as the lease lifetime
remains current. If the Client issues a Renew/Reply exchange, the
Server extends the lifetime. If the Client issues a Release/Reply
exchange, or if the Client does not issue a Renew/Reply within the
lease lifetime, the Server deletes the neighbor cache entry for the
Client and withdraws the IP route from the routing system.
Templin Expires February 27, 2015 [Page 22]
Internet-Draft AERO August 2014
3.11. AERO Relay/Server Routing System
Relays require full topology information of all Client/Server
associations, while individual Servers only require partial topology
information, i.e., they only need to know the ACPs associated with
their current set of associated Clients. This is accomplished
through the use of an internal instance of the Border Gateway
Protocol (BGP) [RFC4271] coordinated between Servers and Relays.
This internal BGP instance does not interact with the public Internet
BGP instance; therefore, the AERO link is presented to the IP
Internetwork as a small set of ASPs as opposed to the full set of
individual ACPs.
In a reference BGP arrangement, each AERO Server is configured as an
Autonomous System Border Router (ASBR) for a stub Autonomous System
(AS) (possibly using a private AS Number (ASN) [RFC1930]), and each
Server further peers with each Relay but does not peer with other
Servers. Similarly, Relays need not peer with each other, since they
will receive all updates from all Servers and will therefore have a
consistent view of the AERO link ACP delegations.
Each Server maintains a working set of associated Clients, and
dynamically announces new ACPs and withdraws departed ACPs in its BGP
updates to Relays. Relays do not send BGP updates to Servers,
however, such that the BGP route reporting is unidirectional from the
Servers to the Relays.
The Relays therefore discover the full topology of the AERO link in
terms of the working set of ACPs associated with each Server, while
the Servers only discover the ACPs of their associated Clients.
Since Clients are expected to remain associated with their current
set of Servers for extended timeframes, the amount of BGP control
messaging between Servers and Relays should be minimal. However, BGP
peers SHOULD dampen any route oscillations caused by impatient
Clients that repeatedly associate and disassociate with Servers.
3.12. AERO Redirection
3.12.1. Reference Operational Scenario
Figure 5 depicts the AERO redirection reference operational scenario,
using IPv6 addressing as the example (while not shown, a
corresponding example for IPv4 addressing can be easily constructed).
The figure shows an AERO Relay ('R'), two AERO Servers ('S1', 'S2'),
two AERO Clients ('A', 'B') and two ordinary IPv6 hosts ('C', 'D'):
Templin Expires February 27, 2015 [Page 23]
Internet-Draft AERO August 2014
+--------------+ +--------------+ +--------------+
| Server S1 | | Relay R | | Server S2 |
| Nbr: A | |(C->S1; D->S2)| | Nbr: B |
+--------------+ +--------------+ +--------------+
fe80::2 fe80::1 fe80::3
L2(S1) L2(R) L2(S2)
| | |
X-----+-----+------------------+-----------------+----+----X
| AERO Link |
L2(A) L2(B)
fe80::2001:db8:0:0 fe80::2001:db8:1:0
+--------------+ +--------------+
| AERO Client A| | AERO Client B|
| (default->S1)| | (default->S2)|
+--------------+ +--------------+
2001:DB8:0::/48 2001:DB8:1::/48
| |
.-. .-.
,-( _)-. 2001:db8:0::1 2001:db8:1::1 ,-( _)-.
.-(_ IP )-. +---------+ +---------+ .-(_ IP )-.
(__ EUN )--| Host C | | Host D |--(__ EUN )
`-(______)-' +---------+ +---------+ `-(______)-'
Figure 5: AERO Reference Operational Scenario
In Figure 5, Relay ('R') applies the address fe80::1 to its AERO
interface with link-layer address L2(R), Server ('S1') applies the
address fe80::2 with link-layer address L2(S1),and Server ('S2')
applies the address fe80::3 with link-layer address L2(S2). Servers
('S1') and ('S2') next arrange to add their link-layer addresses to a
published list of valid Servers for the AERO link.
AERO Client ('A') receives the ACP 2001:db8:0::/48 in a DHCPv6 PD
exchange via AERO Server ('S1') then applies the address
fe80::2001:db8:0:0 to its AERO interface with link-layer address
L2(A). Client ('A') configures a default route and neighbor cache
entry via the AERO interface with next-hop address fe80::2 and link-
layer address L2(S1), then sub-delegates the ACP to its attached
EUNs. IPv6 host ('C') connects to the EUN, and configures the
address 2001:db8:0::1.
AERO Client ('B') receives the ACP 2001:db8:1::/48 in a DHCPv6 PD
exchange via AERO Server ('S2') then applies the address
fe80::2001:db8:1:0 to its AERO interface with link-layer address
L2(B). Client ('B') configures a default route and neighbor cache
entry via the AERO interface with next-hop address fe80::3 and link-
layer address L2(S2), then sub-delegates the ACP to its attached
Templin Expires February 27, 2015 [Page 24]
Internet-Draft AERO August 2014
EUNs. IPv6 host ('D') connects to the EUN, and configures the
address 2001:db8:1::1.
3.12.2. Concept of Operations
Again, with reference to Figure 5, when source host ('C') sends a
packet to destination host ('D'), the packet is first forwarded over
the source host's attached EUN to Client ('A'). Client ('A') then
forwards the packet via its AERO interface to Server ('S1') and also
sends a Predirect message toward Client ('B') via Server ('S1').
Server ('S1') then re-encapsulates and forwards both the packet and
the Predirect message out the same AERO interface toward Client ('B')
via Relay ('R').
When Relay ('R') receives the packet and Predirect message, it
consults its forwarding table to discover Server ('S2') as the next
hop toward Client ('B'). Relay ('R') then forwards both the packet
and the Predirect message to Server ('S2'), which then forwards them
to Client ('B').
After Client ('B') receives the Predirect message, it process the
message and returns a Redirect message toward Client ('A') via Server
('S2'). During the process, Client ('B') also creates or updates a
dynamic neighbor cache entry for Client ('A').
When Server ('S2') receives the Redirect message, it re-encapsulates
the message and forwards it on to Relay ('R'), which forwards the
message on to Server ('S1') which forwards the message on to Client
('A'). After Client ('A') receives the Redirect message, it
processes the message and creates or updates a dynamic neighbor cache
entry for Client ('C').
Following the above Predirect/Redirect message exchange, forwarding
of packets from Client ('A') to Client ('B') without involving any
intermediate nodes is enabled. The mechanisms that support this
exchange are specified in the following sections.
3.12.3. Message Format
AERO Redirect/Predirect messages use the same format as for ICMPv6
Redirect messages depicted in Section 4.5 of [RFC4861], but also
include a new "Prefix Length" field taken from the low-order 8 bits
of the Redirect message Reserved field. For IPv6, valid values for
the Prefix Length field are 0 through 64; for IPv4, valid values are
0 through 32. The Redirect/Predirect messages are formatted as shown
in Figure 6:
Templin Expires February 27, 2015 [Page 25]
Internet-Draft AERO August 2014
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (=137) | Code (=0/1) | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-
Figure 6: AERO Redirect/Predirect Message Format
3.12.4. Sending Predirects
When a Client forwards a packet with a source address from one of its
ACPs toward a destination address covered by an ASP (i.e., toward
another AERO Client connected to the same AERO link), the source
Client MAY send a Predirect message forward toward the destination
Client via the Server.
In the reference operational scenario, when Client ('A') forwards a
packet toward Client ('B'), it MAY also send a Predirect message
forward toward Client ('B'), subject to rate limiting (see
Section 8.2 of [RFC4861]). Client ('A') prepares the Predirect
message as follows:
o the link-layer source address is set to 'L2(A)' (i.e., the link-
layer address of Client ('A')).
o the link-layer destination address is set to 'L2(S1)' (i.e., the
link-layer address of Server ('S1')).
Templin Expires February 27, 2015 [Page 26]
Internet-Draft AERO August 2014
o the network-layer source address is set to fe80::2001:db8:0:0
(i.e., the AERO address of Client ('A')).
o the network-layer destination address is set to fe80::2001:db8:1:0
(i.e., the AERO address of Client ('B')).
o the Type is set to 137.
o the Code is set to 1 to indicate "Predirect".
o the Prefix Length is set to the length of the prefix to be applied
to the Target Address.
o the Target Address is set to fe80::2001:db8:0:0 (i.e., the AERO
address of Client ('A')).
o the Destination Address is set to the source address of the
originating packet that triggered the Predirection event. (If the
originating packet is an IPv4 packet, the address is constructed
in IPv4-compatible IPv6 address format).
o the message includes one or more TLLAOs with Link ID and
Preference set to appropriate values for Client ('A')'s underlying
interfaces, and with UDP Port Number and IP Address set to 0'.
o the message SHOULD include a Timestamp option and a Nonce option.
o the message includes a Redirected Header Option (RHO) that
contains the originating packet truncated to ensure that at least
the network-layer header is included but the size of the message
does not exceed 1280 bytes.
Note that the act of sending Predirect messages is cited as "MAY",
since Client ('A') may have advanced knowledge that the direct path
to Client ('B') would be unusable or otherwise undesirable. If the
direct path later becomes unusable after the initial route
optimization, Client ('A') simply allows packets to again flow
through Server ('S1').
3.12.5. Re-encapsulating and Relaying Predirects
When Server ('S1') receives a Predirect message from Client ('A'), it
first verifies that the TLLAOs in the Predirect are a proper subset
of the Link IDs in Client ('A')'s neighbor cache entry. If the
Client's TLLAOs are not acceptable, Server ('S1') discards the
message. Otherwise, Server ('S1') validates the message according to
the ICMPv6 Redirect message validation rules in Section 8.1 of
[RFC4861], except that the Predirect has Code=1. Server ('S1') also
Templin Expires February 27, 2015 [Page 27]
Internet-Draft AERO August 2014
verifies that Client ('A') is authorized to use the Prefix Length in
the Predirect when applied to the AERO address in the network-layer
source address by searching for the AERO address in the neighbor
cache. If validation fails, Server ('S1') discards the Predirect;
otherwise, it copies the correct UDP Port numbers and IP Addresses
for Client ('A')'s links into the (previously empty) TLLAOs.
Server ('S1') then examines the network-layer destination address of
the Predirect to determine the next hop toward Client ('B') by
searching for the AERO address in the neighbor cache. Since Client
('B') is not one of its neighbors, Server ('S1') re-encapsulates the
Predirect and relays it via Relay ('R') by changing the link-layer
source address of the message to 'L2(S1)' and changing the link-layer
destination address to 'L2(R)'. Server ('S1') finally forwards the
re-encapsulated message to Relay ('R') without decrementing the
network-layer TTL/Hop Limit field.
When Relay ('R') receives the Predirect message from Server ('S1') it
determines that Server ('S2') is the next hop toward Client ('B') by
consulting its forwarding table. Relay ('R') then re-encapsulates
the Predirect while changing the link-layer source address to 'L2(R)'
and changing the link-layer destination address to 'L2(S2)'. Relay
('R') then relays the Predirect via Server ('S2').
When Server ('S2') receives the Predirect message from Relay ('R') it
determines that Client ('B') is a neighbor by consulting its neighbor
cache. Server ('S2') then re-encapsulates the Predirect while
changing the link-layer source address to 'L2(S2)' and changing the
link-layer destination address to 'L2(B)'. Server ('S2') then
forwards the message to Client ('B').
3.12.6. Processing Predirects and Sending Redirects
When Client ('B') receives the Predirect message, it accepts the
Predirect only if the message has a link-layer source address of one
of its Servers (e.g., L2(S2)). Client ('B') further accepts the
message only if it is willing to serve as a redirection target.
Next, Client ('B') validates the message according to the ICMPv6
Redirect message validation rules in Section 8.1 of [RFC4861], except
that it accepts the message even though Code=1 and even though the
network-layer source address is not that of it's current first-hop
router.
In the reference operational scenario, when Client ('B') receives a
valid Predirect message, it either creates or updates a dynamic
neighbor cache entry that stores the Target Address of the message as
the network-layer address of Client ('A') , stores the link-layer
addresses found in the TLLAOs as the link-layer addresses of Client
Templin Expires February 27, 2015 [Page 28]
Internet-Draft AERO August 2014
('A') and stores the Prefix Length as the length to be applied to the
network-layer address for forwarding purposes. Client ('B') then
sets AcceptTime for the neighbor cache entry to ACCEPT_TIME.
After processing the message, Client ('B') prepares a Redirect
message response as follows:
o the link-layer source address is set to 'L2(B)' (i.e., the link-
layer address of Client ('B')).
o the link-layer destination address is set to 'L2(S2)' (i.e., the
link-layer address of Server ('S2')).
o the network-layer source address is set to fe80::2001:db8:1:0
(i.e., the AERO address of Client ('B')).
o the network-layer destination address is set to fe80::2001:db8:0:0
(i.e., the AERO address of Client ('A')).
o the Type is set to 137.
o the Code is set to 0 to indicate "Redirect".
o the Prefix Length is set to the length of the prefix to be applied
to the Target Address.
o the Target Address is set to fe80::2001:db8:1:0 (i.e., the AERO
address of Client ('B')).
o the Destination Address is set to the destination address of the
originating packet that triggered the Redirection event. (If the
originating packet is an IPv4 packet, the address is constructed
in IPv4-compatible IPv6 address format).
o the message includes one or more TLLAOs with Link ID and
Preference set to appropriate values for Client ('B')'s underlying
interfaces, and with UDP Port Number and IP Address set to '0'.
o the message SHOULD include a Timestamp option and MUST echo the
Nonce option received in the Predirect (i.e., if a Nonce option is
included).
o the message includes as much of the RHO copied from the
corresponding AERO Predirect message as possible such that at
least the network-layer header is included but the size of the
message does not exceed 1280 bytes.
Templin Expires February 27, 2015 [Page 29]
Internet-Draft AERO August 2014
After Client ('B') prepares the Redirect message, it sends the
message to Server ('S2').
3.12.7. Re-encapsulating and Relaying Redirects
When Server ('S2') receives a Redirect message from Client ('B'), it
first verifies that the TLLAOs in the Redirect are a proper subset of
the Link IDs in Client ('B')'s neighbor cache entry. If the Client's
TLLAOs are not acceptable, Server ('S2') discards the message.
Otherwise, Server ('S2') validates the message according to the
ICMPv6 Redirect message validation rules in Section 8.1 of [RFC4861].
Server ('S2') also verifies that Client ('B') is authorized to use
the Prefix Length in the Redirect when applied to the AERO address in
the network-layer source address by searching for the AERO address in
the neighbor cache. If validation fails, Server ('S2') discards the
Predirect; otherwise, it copies the correct UDP Port numbers and IP
Addresses for Client ('B')'s links into the (previously empty)
TLLAOs.
Server ('S2') then examines the network-layer destination address of
the Predirect to determine the next hop toward Client ('A') by
searching for the AERO address in the neighbor cache. Since Client
('A') is not one of its neighbors, Server ('S2') re-encapsulates the
Predirect and relays it via Relay ('R') by changing the link-layer
source address of the message to 'L2(S2)' and changing the link-layer
destination address to 'L2(R)'. Server ('S2') finally forwards the
re-encapsulated message to Relay ('R') without decrementing the
network-layer TTL/Hop Limit field.
When Relay ('R') receives the Predirect message from Server ('S2') it
determines that Server ('S1') is the next hop toward Client ('A') by
consulting its forwarding table. Relay ('R') then re-encapsulates
the Predirect while changing the link-layer source address to 'L2(R)'
and changing the link-layer destination address to 'L2(S1)'. Relay
('R') then relays the Predirect via Server ('S1').
When Server ('S1') receives the Predirect message from Relay ('R') it
determines that Client ('A') is a neighbor by consulting its neighbor
cache. Server ('S1') then re-encapsulates the Predirect while
changing the link-layer source address to 'L2(S1)' and changing the
link-layer destination address to 'L2(A)'. Server ('S1') then
forwards the message to Client ('A').
3.12.8. Processing Redirects
When Client ('A') receives the Redirect message, it accepts the
message only if it has a link-layer source address of one of its
Servers (e.g., ''L2(S1)'). Next, Client ('A') validates the message
Templin Expires February 27, 2015 [Page 30]
Internet-Draft AERO August 2014
according to the ICMPv6 Redirect message validation rules in
Section 8.1 of [RFC4861], except that it accepts the message even
though the network-layer source address is not that of it's current
first-hop router. Following validation, Client ('A') then processes
the message as follows.
In the reference operational scenario, when Client ('A') receives the
Redirect message, it either creates or updates a dynamic neighbor
cache entry that stores the Target Address of the message as the
network-layer address of Client ('B'), stores the link-layer
addresses found in the TLLAOs as the link-layer addresses of Client
('B') and stores the Prefix Length as the length to be applied to the
network-layer address for forwarding purposes. Client ('A') then
sets ForwardTime for the neighbor cache entry to FORWARD_TIME.
Now, Client ('A') has a neighbor cache entry with a valid ForwardTime
value, while Client ('B') has a neighbor cache entry with a valid
AcceptTime value. Thereafter, Client ('A') may forward ordinary
network-layer data packets directly to Client ("B") without involving
any intermediate nodes, and Client ('B') can verify that the packets
came from an acceptable source. (In order for Client ('B') to
forward packets to Client ('A'), a corresponding Predirect/Redirect
message exchange is required in the reverse direction; hence, the
mechanism is asymmetric.)
3.12.9. Server-Oriented Redirection
In some environments, the Server nearest the target Client may need
to serve as the redirection target, e.g., if direct Client-to-Client
communications are not possible. In that case, the Server prepares
the Redirect message the same as if it were the destination Client
(see: Section 3.9.6), except that it writes its own link-layer
address in the TLLAO option. The Server must then maintain a
neighbor cache entry for the redirected source Client.
3.13. Neighbor Unreachability Detection (NUD)
AERO nodes perform NUD by sending unicast NS messages to elicit
solicited NA messages from neighbors the same as described in
[RFC4861]. When an AERO node sends an NS/NA message, it MUST use its
link-local address as the IPv6 source address and the link-local
address of the neighbor as the IPv6 destination address. When an
AERO node receives an NS message or a solicited NA message, it
accepts the message if it has a neighbor cache entry for the
neighbor; otherwise, it ignores the message.
When a source Client is redirected to a target Client it SHOULD test
the direct path by sending an initial NS message to elicit a
Templin Expires February 27, 2015 [Page 31]
Internet-Draft AERO August 2014
solicited NA response. While testing the path, the source Client can
optionally continue sending packets via the Server, maintain a small
queue of packets until target reachability is confirmed, or
(optimistically) allow packets to flow directly to the target. The
source Client SHOULD thereafter continue to test the direct path to
the target Client (see Section 7.3 of [RFC4861]) periodically in
order to keep dynamic neighbor cache entries alive.
In particular, while the source Client is actively sending packets to
the target Client it SHOULD also send NS messages separated by
RETRANS_TIMER milliseconds in order to receive solicited NA messages.
If the source Client is unable to elicit a solicited NA response from
the target Client after MAX_RETRY attempts, it SHOULD set ForwardTime
to 0 and resume sending packets via one of its Servers. Otherwise,
the source Client considers the path usable and SHOULD thereafter
process any link-layer errors as a hint that the direct path to the
target Client has either failed or has become intermittent.
When a target Client receives an NS message from a source Client, it
resets AcceptTime to ACCEPT_TIME if a neighbor cache entry exists;
otherwise, it discards the NS message. If ForwardTime is non-zero,
the target Client then sends a solicited NA message to the link-layer
address of the source Client; otherwise, it sends the solicited NA
message to the link-layer address of one of its Servers.
When a source Client receives a solicited NA message from a target
Client, it resets ForwardTime to FORWARD_TIME if a neighbor cache
entry exists; otherwise, it discards the NA message.
When ForwardTime for a dynamic neighbor cache entry expires, the
source Client resumes sending any subsequent packets via a Server and
may (eventually) attempt to re-initiate the AERO redirection process.
When AcceptTime for a dynamic neighbor cache entry expires, the
target Client discards any subsequent packets received directly from
the source Client. When both ForwardTime and AcceptTime for a
dynamic neighbor cache entry expire, the Client deletes the neighbor
cache entry.
3.14. Mobility Management
3.14.1. Announcing Link-Layer Address Changes
When a Client needs to change its link-layer address, e.g., due to a
mobility event, it performs an immediate DHCPv6 Rebind/Reply exchange
via each of its Servers using the new link-layer address as the
source and with a CLLAO that includes the correct Link ID and
Preference values. If authentication succeeds, the Server then
update its neighbor cache and sends a DHCPv6 Reply.
Templin Expires February 27, 2015 [Page 32]
Internet-Draft AERO August 2014
Next, the Client sends unsolicited NA messages to each of its
correspondent Client neighbors using the same procedures as specified
in Section 7.2.6 of [RFC4861], except that it sends the messages as
unicast to each neighbor via a Server instead of multicast. In this
process, the Client should send no more than
MAX_NEIGHBOR_ADVERTISEMENT messages separated by no less than
RETRANS_TIMER seconds to each neighbor.
With reference to Figure 5, Client ('B') sends unicast unsolicited NA
messages to Client ('A') via Server ('S2') as follows:
o the link-layer source address is set to 'L2(B)' (i.e., the link-
layer address of Client ('B')).
o the link-layer destination address is set to 'L2(S2)' (i.e., the
link-layer address of Server ('S2')).
o the network-layer source address is set to fe80::2001:db8:1:0
(i.e., the AERO address of Client ('B')).
o the network-layer destination address is set to fe80::2001:db8:0:0
(i.e., the AERO address of Client ('A')).
o the Type is set to 136.
o the Code is set to 0.
o the Solicited flag is set to 0.
o the Override flag is set to 1.
o the Target Address is set to fe80::2001:db8:1:0 (i.e., the AERO
address of Client ('B')).
o the message includes one or more TLLAOs with Link ID and
Preference set to appropriate values for Client ('B')'s underlying
interfaces, and with UDP Port Number and IP Address set to '0'.
o the message SHOULD include a Timestamp option.
When Server ('S1') receives the NA message, it relays the message in
the same way as described for relaying Redirect messages in
Section 3.12.7. In particular, Server ('S1') copies the correct UDP
port numbers and IP addresses into the TLLAOs, changes the link-layer
source address to its own address, changes the link-layer destination
address to the address of Relay ('R'), then forwards the NA message
via the relaying chain the same as for a Redirect.
Templin Expires February 27, 2015 [Page 33]
Internet-Draft AERO August 2014
When Client ('A') receives the NA message, it accepts the message
only if it already has a neighbor cache entry for Client ('B') then
updates the link-layer addresses for Client ('B') based on the
addresses in the TLLAOs. However, Client ('A') MUST NOT update
ForwardTime since Client ('B') will not have updated AcceptTime.
Note that these unsolicited NA messages are unacknowledged; hence,
Client ('B') has no way of knowing whether Client ('A') has received
them. If the messages are somehow lost, however, Client ('A') will
soon learn of the mobility event via the NUD procedures specified in
Section 3.13.
3.14.2. Bringing New Links Into Service
When a Client needs to bring a new underlying interface into service
(e.g., when it activates a new data link), it performs an immediate
Rebind/Reply exchange via each of its Servers using the new link-
layer address as the source address and with a CLLAO that includes
the new Link ID and Preference values. If authentication succeeds,
the Server then updates its neighbor cache and sends a DHCPv6 Reply.
The Client MAY then send unsolicited NA messages to each of its
correspondent Clients to inform them of the new link-layer address as
described in Section 3.14.1.
3.14.3. Removing Existing Links from Service
When a Client needs to remove an existing underlying interface from
service (e.g., when it de-activates an existing data link), it
performs an immediate Rebind/Reply exchange via each of its Servers
over any available link with a CLLAO that includes the deprecated
Link ID and a Preference value of 0. If authentication succeeds, the
Server then updates its neighbor cache and sends a DHCPv6 Reply. The
Client SHOULD then send unsolicited NA messages to each of its
correspondent Clients to inform them of the deprecated link-layer
address as described in Section 3.14.1.
3.14.4. Moving to a New Server
When a Client associates with a new Server, it performs the Client
procedures specified in Section 3.10.
When a Client disassociates with an existing Server, it sends a
DHCPv6 Release message to the unicast network layer address of the
old Server. The Client SHOULD send the message via a new Server
(i.e., by setting the link-layer destination address to the address
of the new Server) in case the old Server is unreachable at the link
layer, e.g., if the old Server is in a different network partition.
Templin Expires February 27, 2015 [Page 34]
Internet-Draft AERO August 2014
The new Server will forward the message to a Relay, which will in
turn forward the message to the old Server.
When the old Server receives the DHCPv6 Release, it first
authenticates the message. If authentication succeeds, the old
Server withdraws the IP route from the routing system and deletes the
neighbor cache entry for the Client. (The old Server MAY impose a
small delay before deleting the neighbor cache entry so that any
packets already in the system can still be delivered to the Client.)
The old Server then returns a DHCPv6 Reply message via a Relay. The
Client can then use the Reply message to verify that the termination
signal has been processed, and can delete both the default route and
the neighbor cache entry for the old Server.
Clients SHOULD NOT move rapidly between Servers in order to avoid
causing unpredictable oscillations in the Server/Relay routing
system. Such oscillations could result in intermittent reachability
for the Client itself, while causing little harm to the network due
to routing protocol dampening. Examples of when a Client might wish
to change to a different Server include a Server that has gone
unreachable, topological movements of significant distance, etc.
3.15. Encapsulation Protocol Version Considerations
A source Client may connect only to an IPvX underlying network, while
the target Client connects only to an IPvY underlying network. In
that case, the target and source Clients have no means for reaching
each other directly (since they connect to underlying networks of
different IP protocol versions) and so must ignore any redirection
messages and continue to send packets via the Server.
3.16. Multicast Considerations
When the underlying network does not support multicast, AERO nodes
map IPv6 link-scoped multicast addresses (including
'All_DHCP_Relay_Agents_and_Servers') to the link-layer address of a
Server.
When the underlying network supports multicast, AERO nodes use the
multicast address mapping specification found in [RFC2529] for IPv4
underlying networks and use a direct multicast mapping for IPv6
underlying networks. (In the latter case, "direct multicast mapping"
means that if the IPv6 multicast destination address of the
encapsulated packet is "M", then the IPv6 multicast destination
address of the encapsulating header is also "M".)
Templin Expires February 27, 2015 [Page 35]
Internet-Draft AERO August 2014
3.17. Operation on AERO Links Without DHCPv6 Services
When Servers on the AERO link do not provide DHCPv6 services,
operation can still be accommodated through administrative
configuration of ACPs on AERO Clients. In that case, administrative
configurations of AERO interface neighbor cache entries on both the
Server and Client are also necessary. However, this may interfere
with the ability for Clients to dynamically change to new Servers,
and can expose the AERO link to misconfigurations unless the
administrative configurations are carefully coordinated.
3.18. Operation on Server-less AERO Links
In some AERO link scenarios, there may be no Servers on the link and/
or no need for Clients to use a Server as an intermediary trust
anchor. In that case, each Client acts as a Server unto itself to
establish neighbor cache entries by performing direct Client-to-
Client IPv6 ND message exchanges, and some other form of trust basis
must be applied so that each Client can verify that the prospective
neighbor is authorized to use its claimed ACP.
When there is no Server on the link, Clients must arrange to receive
ACPs and publish them via a secure alternate prefix delegation
authority through some means outside the scope of this document.
4. Implementation Status
An application-layer implementation is in progress.
5. IANA Considerations
IANA is instructed to assign a new 2-octet Hardware Type number
"TBD1" for AERO in the "arp-parameters" registry per Section 2 of
[RFC5494]. The number is assigned from the 2-octet Unassigned range
with Hardware Type "AERO" and with this document as the reference.
IANA is instructed to assign a 4-octet Enterprise Number "TBD2" for
AERO in the "enterprise-numbers" registry per [RFC3315].
6. Security Considerations
AERO link security considerations are the same as for standard IPv6
Neighbor Discovery [RFC4861] except that AERO improves on some
aspects. In particular, AERO uses a trust basis between Clients and
Servers, where the Clients only engage in the AERO mechanism when it
is facilitated by a trust anchor. AERO nodes SHOULD also use DHCPv6
securing services (e.g., DHCPv6 authentication,
Templin Expires February 27, 2015 [Page 36]
Internet-Draft AERO August 2014
[I-D.ietf-dhc-sedhcpv6], etc.) for Client authentication and network
admission control.
AERO Redirect, Predirect and unsolicited NA messages SHOULD include a
Timestamp option (see Section 5.3 of [RFC3971]) that other AERO nodes
can use to verify the message time of origin. AERO Predirect, NS and
RS messages SHOULD include a Nonce option (see Section 5.3 of
[RFC3971]) that recipients echo back in corresponding responses.
AERO links must be protected against link-layer address spoofing
attacks in which an attacker on the link pretends to be a trusted
neighbor. Links that provide link-layer securing mechanisms (e.g.,
IEEE 802.1X WLANs) and links that provide physical security (e.g.,
enterprise network wired LANs) provide a first line of defense that
is often sufficient. In other instances, additional securing
mechanisms such as Secure Neighbor Discovery (SeND) [RFC3971], IPsec
[RFC4301] or TLS [RFC5246] may be necessary.
AERO Clients MUST ensure that their connectivity is not used by
unauthorized nodes on their EUNs to gain access to a protected
network, i.e., AERO Clients that act as routers MUST NOT provide
routing services for unauthorized nodes. (This concern is no
different than for ordinary hosts that receive an IP address
delegation but then "share" the address with unauthorized nodes via a
NAT function.)
On some AERO links, establishment and maintenance of a direct path
between neighbors requires secured coordination such as through the
Internet Key Exchange (IKEv2) protocol [RFC5996] to establish a
security association.
7. Acknowledgements
Discussions both on IETF lists and in private exchanges helped shape
some of the concepts in this work. Individuals who contributed
insights include Mikael Abrahamsson, Fred Baker, Stewart Bryant,
Brian Carpenter, Wojciech Dec, Ralph Droms, Brian Haberman, Joel
Halpern, Sascha Hlusiak, Lee Howard, Andre Kostur, Ted Lemon, Joe
Touch and Bernie Volz. Members of the IESG also provided valuable
input during their review process that greatly improved the document.
Special thanks go to Stewart Bryant, Joel Halpern and Brian Haberman
for their shepherding guidance.
This work has further been encouraged and supported by Boeing
colleagues including Keith Bartley, Dave Bernhardt, Cam Brodie,
Balaguruna Chidambaram, Claudiu Danilov, Wen Fang, Anthony Gregory,
Jeff Holland, Ed King, Gen MacLean, Kent Shuey, Brian Skeen, Mike
Templin Expires February 27, 2015 [Page 37]
Internet-Draft AERO August 2014
Slane, Julie Wulff, Yueli Yang, and other members of the BR&T and BIT
mobile networking teams.
Earlier works on NBMA tunneling approaches are found in
[RFC2529][RFC5214][RFC5569].
8. References
8.1. Normative References
[RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.
[RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
1981.
[RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.
[RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
October 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
IPv6 Specification", RFC 2473, December 1998.
[RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
and M. Carney, "Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)", RFC 3315, July 2003.
[RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
Host Configuration Protocol (DHCP) version 6", RFC 3633,
December 2003.
[RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
Neighbor Discovery (SEND)", RFC 3971, March 2005.
[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
for IPv6 Hosts and Routers", RFC 4213, October 2005.
[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
September 2007.
Templin Expires February 27, 2015 [Page 38]
Internet-Draft AERO August 2014
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862, September 2007.
[RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
Requirements", RFC 6434, December 2011.
8.2. Informative References
[I-D.ietf-dhc-sedhcpv6]
Jiang, S., Shen, S., Zhang, D., and T. Jinmei, "Secure
DHCPv6 with Public Key", draft-ietf-dhc-sedhcpv6-03 (work
in progress), June 2014.
[RFC0879] Postel, J., "TCP maximum segment size and related topics",
RFC 879, November 1983.
[RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
selection, and registration of an Autonomous System (AS)",
BCP 6, RFC 1930, March 1996.
[RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
Domains without Explicit Tunnels", RFC 2529, March 1999.
[RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.
[RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
Protocol 4 (BGP-4)", RFC 4271, January 2006.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, February 2006.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, December 2005.
[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", RFC 4821, March 2007.
[RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
Errors at High Data Rates", RFC 4963, July 2007.
[RFC4994] Zeng, S., Volz, B., Kinnear, K., and J. Brzozowski,
"DHCPv6 Relay Agent Echo Request Option", RFC 4994,
September 2007.
[RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
March 2008.
Templin Expires February 27, 2015 [Page 39]
Internet-Draft AERO August 2014
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5494] Arkko, J. and C. Pignataro, "IANA Allocation Guidelines
for the Address Resolution Protocol (ARP)", RFC 5494,
April 2009.
[RFC5522] Eddy, W., Ivancic, W., and T. Davis, "Network Mobility
Route Optimization Requirements for Operational Use in
Aeronautics and Space Exploration Mobile Networks", RFC
5522, October 2009.
[RFC5569] Despres, R., "IPv6 Rapid Deployment on IPv4
Infrastructures (6rd)", RFC 5569, January 2010.
[RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
"Internet Key Exchange Protocol Version 2 (IKEv2)", RFC
5996, September 2010.
[RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers", RFC 6146, April 2011.
[RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
Troan, "Basic Requirements for IPv6 Customer Edge
Routers", RFC 6204, April 2011.
[RFC6355] Narten, T. and J. Johnson, "Definition of the UUID-Based
DHCPv6 Unique Identifier (DUID-UUID)", RFC 6355, August
2011.
[RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
for Equal Cost Multipath Routing and Link Aggregation in
Tunnels", RFC 6438, November 2011.
[RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
RFC 6691, July 2012.
[RFC6706] Templin, F., "Asymmetric Extended Route Optimization
(AERO)", RFC 6706, August 2012.
[RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field",
RFC 6864, February 2013.
[RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
UDP Checksums for Tunneled Packets", RFC 6935, April 2013.
Templin Expires February 27, 2015 [Page 40]
Internet-Draft AERO August 2014
[RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
for the Use of IPv6 UDP Datagrams with Zero Checksums",
RFC 6936, April 2013.
[RFC6939] Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer
Address Option in DHCPv6", RFC 6939, May 2013.
[RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
with IPv6 Neighbor Discovery", RFC 6980, August 2013.
[RFC7078] Matsumoto, A., Fujisaki, T., and T. Chown, "Distributing
Address Selection Policy Using DHCPv6", RFC 7078, January
2014.
Author's Address
Fred L. Templin (editor)
Boeing Research & Technology
P.O. Box 3707
Seattle, WA 98124
USA
Email: fltemplin@acm.org
Templin Expires February 27, 2015 [Page 41]
Html markup produced by rfcmarkup 1.129d, available from
https://tools.ietf.org/tools/rfcmarkup/